

MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

THE KLUWER INTERNATIONAL SERIES
IN ENGINEERING AND COMPUTER SCIENCE

ANALOG CIRCUITS AND SIGNAL PROCESSING
Consulting Editor: Mohammed Ismail. Ohio State

University

Related Titles:

CONTINUOUS-TIME SIGMA-DELTA MODULATION FOR A/D CONVERSION IN
RADIO RECEIVERS

L. Breems, J.H. Huijsing
ISBN: 0-7923-7492-4

DIRECT DIGITAL SYNTHESIZERS: THEORY, DESIGN AND APPLICATIONS
J. Vankka, K. Halonen
ISBN: 0-7923 7366-9

SYSTEMATIC DESIGN FOR OPTIMISATION OF PIPELINED ADCs
J. Goes, J.C. Vital, J. Franca
ISBN: 0-7923-7291-3

OPERATIONAL AMPLIFIERS: Theory and Design
J. Huijsing
ISBN: 0-7923-7284-0

HIGH-PERFORMANCE HARMONIC OSCILLATORS AND BANDGAP REFERENCES
A. van Staveren, C.J.M. Verhoeven, A.H.M. van Roermund
ISBN: 0-7923-7283-2

HIGH SPEED A/D CONVERTERS: Understanding Data Converters Through SPICE
A. Moscovici
ISBN: 0-7923-7276-X

ANALOG TEST SIGNAL GENERATION USING PERIODIC -ENCODED DATA
STREAMS

B. Dufort, G.W. Roberts
ISBN: 0-7923-7211-5

HIGH-ACCURACY CMOS SMART TEMPERATURE SENSORS
A. Bakker, J. Huijsing
ISBN: 0-7923-7217-4

DESIGN, SIMULATION AND APPLICATIONS OF INDUCTORS AND TRANSFORMERS
FOR Si RF ICs

A.M. Niknejad, R.G. Meyer
ISBN: 0-7923-7986-1

SWITCHED-CURRENT SIGNAL PROCESSING AND A/D CONVERSION CIRCUITS:
DESIGN AND IMPLEMENTATION

B.E. Jonsson
ISBN: 0-7923-7871-7

RESEARCH PERSPECTIVES ON DYNAMIC TRANSLINEAR AND LOG-DOMAIN
CIRCUITS

W.A. Serdijn, J. Mulder
ISBN: 0-7923-7811-3

CMOS DATA CONVERTERS FOR COMMUNICATIONS
M. Gustavsson, J. Wikner, N. Tan
ISBN: 0-7923-7780-X

DESIGN AND ANALYSIS OF INTEGRATOR-BASED LOG -DOMAIN FILTER CIRCUITS
G.W. Roberts, V. W. Leung
ISBN: 0-7923-8699-X

VISION CHIPS
A. Moini
ISBN: 0-7923-8664-7

COMPACT LOW-VOLTAGE AND HIGH-SPEED CMOS, BiCMOS AND BIPOLAR
OPERATIONAL AMPLIFIERS

K-J. de Langen, J. Huijsing
ISBN: 0-7923-8623-X

CONTINUOUS-TIME DELTA-SIGMA MODULATORS FOR HIGH-SPEED A/D
CONVERTERS: Theory, Practice and Fundamental Performance Limits

J.A. Cherry, W. M. Snelgrove

MODEL ENGINEERING IN
MIXED-SIGNAL CIRCUIT

DESIGN

Sorin A. Huss
Darmstadt University of Technology

A Guide to Generating Accurate Behavioral Models
in VHDL-AMS

by

KLUWER ACADEMIC PUBLISHERS
NEW YORK, BOSTON, DORDRECHT, LONDON, MOSCOW

eBook ISBN: 0-306-48101-4
Print ISBN: 0-7923-7598-X

©2003 Kluwer Academic Publishers
New York, Boston, Dordrecht, London, Moscow

Print ©2001 Kluwer Academic Publishers

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Kluwer Online at: http://kluweronline.com
and Kluwer's eBookstore at: http://ebooks.kluweronline.com

Dordrecht

To Monika and to our
children Britta, Martin, and

Michael. Thank you for
your patience!

Contents

List of Figures

List of Tables

Acknowledgments

Foreword

ix
xiii
xv

xvii

1. INTRODUCTION

Model flow in Mixed-Signal Design

Model classes

Modeling languages

1.1

1.2

1.3

2. SPECIFICATION OF BEHAVIOR

Analog Components

Digital Modules

Mixed-signal Systems

2.1

2.2

2.3

3. MODEL REPRESENTATION

3.1 Fundamentals of VHDL
3.1.1
3.1.2
3.1.3
3.1.4

Behavior
Data flow
Structure
Relations of models

3.2 Introduction to VHDL-AMS
3.2.1
3.2.2
3.2.2.1
3.2.2.2
3.2.2.3
3.2.2.4
3.2.2.5

Design objects
Extensions to VHDL
Quantities and Terminals
Conservation Laws
Representation of Behavior
Model Flow Using VHDL-AMS
Multi-Nature Systems

vii

1
2

5
8

17
17
23
24

33
33
34
35
36
36
36
38
39
40
41
46
49
51

viii MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

3.3 Mixed-Signal, Multi-Nature Modeling Example
3.3.1
3.3.2
3.3.2.1
3.3.2.2
3.3.2.3
3.3.2.4
3.3.2.5
3.3.3

Partitioning the System
Models of VDC functional units
Testbench
Environmental Model
Temperature Sensor
Analog/Digital Converter
Digital Block
Simulation Results

4. CHARACTERIZATION OF CIRCUIT PROPERTIES

4.1

4.2

4.3
4.4

Role and Principles of Circuit Property Extraction

Requirements of Simulation-based Characterization

Visually specified Characterization Plans

Architecture of the ViCE System

5. ADVANCED MODELING METHODOLOGY

5.1

5.2
5.3
5.4

5.5

5.6

Motivation

Classification of Modeling Approaches

The DEV&DESS Model

Basic Methodology and Model Architecture

Model Calibration

Case Study: A Linear Dynamic System

6. APPLICATION EXAMPLES

6.1

6.2

6.3
6.4

Overview

Active Filter Circuit in Bipolar Technology

A/D Converter in CMOS Technology

Conclusions

References

54
54
56
56
57
58
58
61
63

69
69
74
78
83

89
89
90
94
97

108
116

125
125
126
137
155

157

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.1
3.2
3.3
3.4

’Black box’ model of a design process
Design flow for systems design
Model generation and validation
Time- and value-continuous signal waveform
Event discrete signal waveform
Time-discrete signal waveform
Causal model
Acausal model
Linear network
Block diagram of the linear network
Ideal electrical capacitor models
AND gate models
Macro level model of an operational amplifier
Schematic of a nonlinear CMOS circuit
Results of transient simulation
Specification of component behavior
Internal communication within a mixed-signal system
Time scales in mixed-signal systems
D/A conversion models
Abstraction hierarchy for mixed-signal systems
Interrelationship of model and simulator
Entity declaration of LFSR
Block and black box schematic of LFSR
Behavioral model of LFSR
Data flow model of LFSR

2
3
4

6

7

8
9

10

11
12
13
14

20
21
22

23
26

26
27

29
31
34
34

35
35

ix

 x MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

3.5

3.6
3.7
3.8
3.9
3.10

3.11

3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19

3.20
3.21
3.22
3.23
3.24

3.25
3.26

3.27

3.28

3.29
3.30
3.31
3.32
3.33
3.34
3.35

3.36
4.1

4.2
4.3
4.4

Structural model of LFSR
Testbench of LFSR
Combination of signal classes
Connecting functional and behavioral class models
Extension to IEEE Standard 1076-1993
Classification of quantities
Simple example for across and through quantities
Definition of nature Electrical and some branch quantities
Nonconservative block
Mixed causal/acausal block model
Simple analog circuit
Coding of component behavior model
Code of RC circuit
Generic model code of a D/A converter
Flow of model instances in systems design
Generic harmonic oscillator
Entity declarations for implementation variants
Pin compatibility of functional and behavioral models
Subset of a multi-nature package
Structural multi-nature model of a diode
Multi-nature model of a diode
Composition of the depth gauge
Code of vdc_testbench
Entity declaration of vdc_sources
Architecture declaration of LakeDive
Equivalent circuit for a temperature sensor
Model of temperature sensor
Model of vdc_ADC converter
Entity declaration of vdc_dsp
Architecture declaration of vdc_dsp
Model of aberation monitor vdc_tester
Results of system simulation
Output waveforms of an inverter resulting from fanout
load conditions
Role of funcional block characterization
Part of a characterization plan coded for SimPilot
Characterization on top of procedural simulation

36

37

39

39

40

41

42

42

43

44

45

46

47

48

49

50

50

51

52

53

53

55

56

58

59

60

61

62

63

64

66

67

71

73

76

77

List of Figures xi

4.5

4.6

4.7

4.8

4.9
4.10

4.11

4.12

4.13

5.1

5.2

5.3
5.4

5.5

5.6
5.7
5.8
5.9

5.10

5.11
5.12

5.13
5.14

5.15
5.16

5.17

5.18
5.19

5.20

5.21
5.22

5.23
5.24
5.25

Extraction of slew rate values coded in CLANG
Access windows to the ViCE system
Representation of a graph vertex as a glyph
Visually represented characterization plan for slew rate
extraction
Overview of ViCE
Loop parallelization
Generic communication of scheduler and server pro-
grams within xpViCE
Outline of graph mapping
User interface of xpViCE
Block schematic of a successive approximation A/D converter
Behavioral generic VHDL-AMS model of an A/D converter
Information flows for model generation
DEV&DESS model architecture
Output signal values at discrete points in time
Response of a dynamic system to an input variable change
External and internal event queues
Generic VHDL-AMS model code for a 1 bit D/A converter
Simulation of mixed-signal circuits
Step response of a dynamic system
Integration steps prior to external event processing
Effect of adjacent events
Generic architecture of a behavioral algorithmic level model
Model generation methodology
Model calibration by means of the methods library
Comparison of reference and model behavior by differ-
ent error norms
Geometrical interpretation of distances
Layers of methods library
Pseudo-code of interval segmentation for linear approximation
Linear dynamic system of 2. order
DESS model of the linear dynamic system
Passive RC circuit
Behavioral model of RC circuit
Calibrated parameter function DCtf
Calibrated parameter function SlewRate

77

79

80

81
84

85

86

87

87
90

91

95
96

98

98
99

100
100

103
104

105

107
109

111

113

113

115
115

116

116

117
118
119
119

 xii MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

5.26
5.27
5.28

6.1
6.2
6.3
6.4

6.5
6.6
6.7

6.8
6.9

6.10

6.11

6.12
6.13
6.14

6.15
6.16
6.17

6.18

6.19
6.20
6.21

6.22
6.23
6.24

Calibrated parameter function TDly
Functional block model of the linear dynamic system
Simulation results gained from executing the functional
block model
Schematic of a biquad filter
Schematic of the operational amplifier MOPA1
Testbench adapter tool
Subset of a visually specified characterization plan
Calibration of the DC transfer function
Calibration of slewing behavior
Comparison of dynamic behavior of opamp models

Output resistance as a function of the load condition
Comparison of the DC behavior of models at identical
output load conditions
Comparison of the time domain response of different
filter models
Context and generic architecture of the A/D converter
Conversion algorithm of a stage
Circuit schematic of a converter stage

DC transfer curve of the converter stage

Partitioned converter stage
DC transfer curves of the ConvSubStage block
Comparison of the time domain responses of different
subblock models
Comparison of time domain respones of different con-
vertrer stage models
Simulation results for mixed-level model of the A/D converter
Calibrated generic model of the A/D converter
Comparison of switching time points for the LSB of
the A/D converter

Top level model of the A/D converter
Model of the converter stage
Behavioral model of ConvSubStage

120
122

123
127
127
129

130
131
132

133
134

135

136
138
139
140

141

141
142

143

144
145
146

147
149
150

151

List of Tables

xiii

2.1
2.2

2.3
3.1
4.1
4.2
5.1
5.2

6.1
6.2
6.3
6.4

Abstraction hierarchy for analog components and blocks
Abstraction hierarchy for digital modules and systems
Different implementation styles of a filter block
Values of mode subject to PortAttribute

Coverage of requirements of characterization plans
Available control operators
Classes of modeling approaches
Fundamental parameter functions of block models

Testbenches for opamp property extraction

Segments and calibrated regression of the method DCtf
Comparison of requirements in terms of simulation resources
Comparison of simulation times for different models of
the A/D converter.

18
25
29
43
78
82
92

107

128

131
137

144

Acknowledgments

First of all I would like to thank Dr. Mohammed Ismail, Editor of the Book
Series, for his enthusiastic and encouraging support in the conceptual phase of
this book. Without his ongoing help this book project would have remained to
be just another project. Thanks also to Mark de Jongh of Kluwer Academic
Publishers for the pleasant cooperation.

This work is based on research activities in mixed-signal as well as in ana-
log design and modeling performed at my institute over the last decade. I
would like to thank my PhD students Wolfgang Boßung, Michael Goedecke,
Hatem Hamad, Steffen Klupsch, and Ralf Rosenberger for their significant
contributions to this area. Their research results are reflected in this book as
well as the implementation work of many undergraduate and graduate students,
namely Nadeem Bhatti, Oliver Glier, Karsten Grüner, Tobias Kuckuck, Felix
Madlener, Kai Morich, Michael Stini, Wolfram Stumpf and Lars Wehmeyer.
Philipp Hahn, Stephan Hermanns, and Stephan Klaus contributed their exper-
tise in generating documents, their valuable help in the final phase of
this book project is gratefully acknowledged.

All bits and pieces of the considerably large design software suites available
at my institute have been kept together by the efforts of Eva Glaser, the system
administrator.

Special thanks goes to Elisabeth Hudson. She completed all text processing
and figures drawing in an excellent way, a not always easy task. In addition,
she morphed my sometimes rather basic English expressions into readable sen-
tences. However, the responsibility for typos, mistakes, and errors remains
completely with me.

Commercial trademarks as referred to in this book are assigned to their own-
ers according to my best knowledge. I appologize in advance for any inaccu-
racy in this matter.

xv

Sorin A. Huss
Darmstadt, August 2001

Foreword

Model engineering is an important activity within the design flow of inte-
grated circuits and signal processing systems. This activity is not new at all
in computer engineering, however, and takes a central role in practice. Model
engineering of digital systems is based on agreed concepts of abstraction hi-
erarchies for design object representations as well as the expressive power of
hardware description languages (HDL). Since their gradual introduction over
time HDL have proved to form the foundation of design methodologies and
related design flows. Design automation tools for simulation, synthesis, test
generation, and, last but not least, for formal proof purposes rely heavily on
standardized digital HDL such as Verilog and VHDL.

In contrast to purely digital systems there is an increasing need to design
and implement integrated systems which exploit more and more mixed-signal
functional blocks such as A/D and D/A converters or phase locked loops. Even
purely analog blocks celebrate their resurrection in integrated systems design
because of their unique efficiency when is comes to power consumption re-
quirements, for example, or complexity limitations. Examples of such analog
signal processing functions are filtering or sensor signal conditioning. In gen-
eral, analog and mixed-signal processing is indispensable when interfacing the
real world (i.e., analog signals) to computers (i.e., digital data processing).
Validation of integrated systems, an activity to be executed during the whole
design flow, requires a single HDL for model representation in order to handle
both partitions of the system model and especially their interaction efficiently.

Therefore, abstract descriptions of analog and mixed-signal systems and
components are a new trend in model engineering. Again, modeling of such
design objects is not as new as it might seem from the term of ’behavioral’
modeling, an almost ubiquitous buzz word nowadays. Structural descriptions
from basic components such as transistors and somewhat more abstract repre-
sentations of analog circuits denoted as macro models have been used in prac-
tice for decades by analog circuit designers for analysis purposes exploiting

xvii

SPICE-like simulators. The intrinsic behavior of such models is transparent to
most design engineers because it is well hidden within predefined component
libraries. The availability of HDL for analog and especially for mixed-signal
application domains has considerably changed this situation. Now, a modeler
is enabled to express directly the behavior of parts of the integrated system
without being limited to low-level model primitives such as transistor instances
or controlled voltage sources. However, new questions arise, which are quite
similar to those in the early days of modeling in the digital domain. These
questions address abstraction level hierarchies, modeling concepts and related
methods, model calibration and representation (i.e., the whole range of model
engineering in mixed-signal systems).

The purpose of this book, therefore, is to combine the main issues of hard-
ware description, characterization methods for the extraction of model param-
eters, and modeling methodologies for accurate high-level models of mixed-
signal components and functional blocks. The work presented here emphasizes
— for the first time — an engineering view on model generation and handling,
thus providing a unique guide both for practitioners and students of electrical
and computer engineering at graduate level. Chapter 1 presents an introduction
to the model flow within integrated systems design, to generic model classes
as well as to fundamental modeling concepts and representation languages.
Chapter 2 is dedicated to the specification of behavior for analog and digital
components. Abstraction hierarchies for these components are presented and
discussed with respect to mixed-signal applications. Chapter 3 is intended to
present a compact introduction to the basic concepts and to the expressivity of
the HDL covered by the new IEEE standard 1076.1, also known as VHDL-
AMS. Chapter 4 addresses circuit property extraction (i.e., characterization
issues of analog building blocks). A new modeling methodology for mixed-
signal circuits is proposed in Chapter 5. Finally, Chapter 6 presents results of
the outlined model engineering methods for circuit examples of different com-
plexity and operation domains. Several conclusions are summarized at the end
of Chapter 6.

xviii MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

Chapter 1

INTRODUCTION

Analog and mixed-signal integrated circuits (IC) design represents a major
challenge for the design of complex information processing systems, especially
when it comes to efficient top-down design flows. The generic architecture of
mixed analog-digital systems being integrated into one IC, which is known
as the System-on-a-Chip (SoC) style, consists of DSP cores and microcon-
trollers surrounded by A/D and D/A converters, which interface the internal
bulk of digital processing to the analog sources and sinks of external informa-
tion. In the signal processing and integrated circuits community it is widely
agreed upon that analog and mixed-signal design expertise will increasingly
be exploited for an implementation of powerful and at the same time cost-
effective products in the areas of communication, consumer and automotive
applications. When it comes to discussions on appropriate design flows for
such products then two major problem regions may be identified. First, the
design tools applied for design tasks in the analog and in the digital domain
have to ”talk to each other”. An explicit need for such a tool communication is
present especially in converter design. Secondly, top-down design — a proven
adequate design methodology at least for digital systems — has to be adopted
to the mixed-signal domain. However, good model-building concepts and ef-
ficient tools are essential for a painless transfer of abstract top-down method-
ologies to engineering practice. In addition, appropriate calibration methods
are a precondition to ensure that high-level behavioral models do not diverge
from lower-level, detailed models. In this chapter, therefore, we first will be
discussing some basic issues related to model flows, modeling concepts, and
model representation languages, which are the main means to making models
executable (i.e., to get them to work).

1

2 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

1.1 Model flow in Mixed-Signal Design
The design process for a technical product may, in general, be roughly sub-

divided into three main phases: conceptualization, concept refinement, and
implementation. Inputs to the process are the design requirements, eventu-
ally yielding in the design results. A more detailed view to this ’black box‘
model of the design process as depicted in Fig. 1.1 results in an identification
of a process chain consisting of generating and analyzing activities to be per-
formed iteratively within the outlined steps of conceptualization, refinement,
and implementation.

Design requirements consist of a description of the envisaged functionality
of the new product and sometimes of constraints referring to the final imple-
mentation such as an exploitation of commercially available subsystems of-
fered either as standard components or as Intellectual Property (IP) products.
This set of information is commonly known as the technical product speci-
fication and it is still denoted in an informal way (i.e., written in a natural
language and augmented by some tables and diagrams). Nontechnical specifi-
cations such as cost frames and design deadlines are important for the design
process as well. They are, therefore, viewed as additional inputs to the design
process as outlined in Fig. 1.1.

The first and most important activities of the systems engineer during the
conceptual phase are formalization of the specification, determination of solu-
tion strategies, and partitioning of the overall task into independent subtasks
to be forwarded to design teams specialized in different areas such as analog
circuit design or real-time software engineering. Fig. 1.2 depicts the design
flow during conceptualization and refinement.

Modeling plays a central role in this design phase. Different model instan-
tiations, abstraction levels, and accuracy requirements have to be dealt with
during concept refinement. In addition, multi-nature systems, in general, op-
erate time-continuously, but the information processing inherent to most such
systems consists of digital hardware and software modules, which are best rep-
resented in a time- or event-discrete way.

The design flows in state-of-the-art digital systems are based on a mature
and widely accepted abstraction hierarchy and on the resulting design activi-

Introduction 3

ties. A holistic thinking of systems properties and requirements is supported
by coarse grain structural descriptions together with a functional partitioning
of the system and by high-level language descriptions of the systems partitions
or components as well as their interaction via communication. At lower ab-
straction levels physical behavior comes in gradually, which is supported by
appropriate simulation tools and modeling paradigms. Sophisticated verifica-
tion, synthesis and analysis tools tie together the level hierarchy and thus form
a consistent generic design flow with a variety of application-specific instanti-
ations.

The actual situation in analog design is completely in contrast to the well-
established and elaborated digital systems design flow. This flow of design ac-
tivities is much more primitive in the sense that low-level component descrip-
tions and early considerations of physical behavior still prevail the activities
of circuit design engineers. Simulation tools address mainly low-level repre-
sentations of functional blocks, and synthesis is — except a few experimental
approaches from academia, e.g., [FVG00] and first commercial attempts such
as [Ant98] — almost not present in practice.

In mixed-signal design the problems resulting from the rather poor state
of the art in analog circuit design automation are worsened by the following
facts. First, the design space for possible systems implementations is consider-
ably enlarged because of the multiple choices available for an implementation
of one and the same functional block. An audio filter, for instance, may be

4 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

implemented as an active RC circuit, as a switched-capacitor module, or as
a digital filter, which, in turn may be instantiated by an application specific
piece of hardware or an algorithm running either on a general purpose proces-
sor or a digital signal processor. Secondly, a not appropriate consideration of
the sophisticated interaction of analog (i.e., time and value continuous signals)
and digital (i.e., time and value discrete signals) internal to a system may re-
sult in an out-of-spec function at least, which is likely to be detected in the
implementation phase only thus causing major redesign efforts.

Our interest is focused on the model flow associated to the system design
phases as summarized in Fig. 1.2. Model generation and application play a
central role during the whole design flow except the physical implementation
of a mixed-signal system. Rather different requirements on property coverage
and accuracy have to be combined into model instantiations and refinement
procedures.

When introducing modeling as a central method for the support of almost
the whole design task, which starts from a specification of the intended systems
behavior and ends with a real product, the question arises how models relate to
the physical reality.

Fig. 1.3 highlights this rather complex relationship [LMO83, Rob99]. Start-
ing from an in-depth analysis of the real world problem, an abstraction first
takes place in the sense that properties and relationships are to be identified,

Introduction 5

which must at least be present in the model to be developed. The result of
this activity, in general, is a set of mathematical equations denoting either first
order, idealized relations, or more detailed relationships. Then an appropri-
ate modeling concept has to be established and the set of equations has to be
mapped to it accordingly. The next step consists of representing this inter-
mediate model in an executable description language and in calibrating model
parameters to data taken from the real world problem. Executing the model or,
in the general case, a set of interacting models produces a simulation result,
which has to be assessed as whether or not it copes with the specification ex-
tracted from the real world problem. In case model outputs and specification fit
within predefined tolerances, possibly after completing several model refine-
ment steps in between, then an implementation of the system takes place next,
finally resulting in a physical representation of the systems model. Obviously,
validation takes a central role in this modeling flow as depicted in Fig. 1.3.

1.2 Model classes
Over the past decades systems theory has elaborated an interdisciplinary

approach to the modeling problem of dynamic systems. It emphasizes theoret-
ical concepts for the specification of dynamic systems at high abstraction lev-
els. The fundamental concepts highlighted in the following are based mainly
on proposals of Zeigler et al., which are presented and discussed in detail in
[ZPK00].

A generic system consists of inputs, outputs, an internal state, and a spec-
ification of the systems dynamics. The internal state denotes its behavior at
a certain point in time, whereas the dynamics describes how the internal state
evolves over time. Therefore, a state transition function is introduced which
determines the next state depending on the actual overall state and the inputs.
In turn the outputs are calculated from the actual internal state and, possibly,
from the input values. The formal definition of a general Input-Output-System
IOS is given by

Time
Vector of input parameters
Vector of output parameters
Vector of state variables
State transition function
Output function

This rather abstract model has to be refined for the description of time-
continuous, time-discrete, and later on for an additional hybrid model class,

6 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

thus resulting in the generic classes denoted as DESS (Differential Equation
Specified System), DEVS (Discrete Event Specified System), and DTSS (Dis-
crete Time Specified System).

DESS, the time-continuous dynamic system, is defined as

Vector of input parameters
Vector of output parameters
Vector of state variables
Function of change over time
Output function

A DESS is characterized by time-continuous waveforms of its variables,
whereas the time base is the set of real numbers. This means that all vari-
ables (i.e., input, output and state) may change their values an infinite number
of times within a bounded time interval. The rate of change function f is, in
general, represented by a set of differential equations which defines the map-
ping of both state and input parameters to state variables. Fig. 1.4 depicts the
characteristic waveform of signals within a DESS.

Introduction 7

DEVS, the event discrete dynamic system, is defined as

Vector of input parameters
Vector of output parameters
Vector of state variables
Transition function for events
Output function
Time advance function

A DEVS is characterized by real values for variables and by a continuous
time base. In contrast to a DESS there is a limited number of times for the
changes of variable values within a bounded time interval. A change of vari-
able values takes place at an event time point only. Events may result either
from value changes at inputs or from changes of internal (i.e., state) variables
of the system. This is a standard situation in digital systems, where changes of
internal signals resulting from a state transition calculation are scheduled for
future points in time relative to the actual time of the system thus implement-
ing a time delay operator. Fig. 1.5 visualizes the characteristic waveform of
signals within a DEVS.

8 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

Finally, DTSS, the time discrete dynamic sytem, is defined by

Vector of input parameters
Vector of output parameters
Vector of state variables
Transition function for events
Output function

A DTSS features a discrete time base. Values of variables are defined at
these discrete, in general, equidistant points in time. As a consequence, value
changes may only take place at these a priori known time points. Difference
equations are the usual representation means for the description of the behavior
in DTSS, also known as sampling systems. Fig. 1.6 depicts the characteristic
waveform within a DTSS. Note that DESS, DEVS, and DTSS are causal mod-
els according to the definition given in the next section.

1.3 Modeling languages
Modeling languages are the primary means for awaking conceptual models

as depicted in Fig. 1.3 to life (i.e., evolving their behavior over time according

Introduction 9

to excitations). Many languages and associated model execution tools usualy
known as simulators have been developed over the past decades. They may
roughly be classified into analog, or, more precisely, time and value continu-
ous, and into digital (i.e., event discrete) systems modeling languages. In ad-
dition, one notices an application domain biasing of many of these languages,
especially in the time and value continuous area.

Languages aimed at the modeling of the signal flow in continuous systems
such as MatLab/Simulink1, Mathematica2, or MATRIXx 3 emphasize a block-
oriented, equation-based modeling style, which is very useful when designing
control or signal processing systems, for example. A system is thus described
in terms of a priori known quantities, by unknown quantities, and by a suffi-
ciently large set of algebraic and/or differential equations which relate known
to unknown quantities. This modeling concept is denoted as causal because the
information flow is unidirectional from the (known) inputs to the (unknown)
outputs of the systems model, which in turn is composed from more or less
complex functional blocks.

Fig. 1.7 visualizes this modeling concept. The quantity vectors acting as
inputs and outputs to the model are not necessarily of the same dimension.

In contrast, modeling languages for dedicated application domains such as
electrical and electronic circuit engineering — an area we will focus on in the
sequel — rely on the acausal modeling concept. The acausal (sometimes de-
noted as noncausal or first principles modeling) concept refers to a description
of component and system behavior under consideration of conservation laws,
such as Kirchhoff’s Rules for electrical networks. Here, there is no explicit
allocation to inputs and outputs of a system. Conservation laws combined with
component behavior captured by the associated constitutive equations form
the complete set of linear and/or nonlinear algebraic and differential equations

1MatLab and Simulink are trademarks of MathWorks, Inc.
2Mathematica is a trademark of Wolfson Research, Inc.
3MATRIXx is a trademark of Wind River Systems, Inc.

10 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

which is to be solved. The signal flow within the system is bidirectional, which
is a characteristic of acausal descriptions. SPICE4, Saber5, and Dymola6 are
examples for such languages and simulation tools.

Fig. 1.8 highlights the connectivity situation with an acausal model. Inputs
or outputs are not directly visible from this kind of model description.

The fundamental differences of these modeling concepts are best demon-
strated by a simple example. For this purpose, consider the electrical circuit
shown in Fig. 1.9. The circuit schematic does not explicitly denote its inputs
and outputs, it thus represents an acausal model. An experienced circuit de-
signer, however, may easily conclude from her or his knowledge of network
theory that the single source in Fig. 1.9 acts as an input, but outputs are still
undefined.

A calculation of all voltages and currents present in the circuit of Fig. 1.9 is
accomplished from the set of constitutive element equations

and from the set of equations related to conservations laws.

4SPICE is a trademark of the University of California at Berkeley
5Saber is a trademark of Avant! Corp.
6Dymola is a trademark of Dynasim AB

Introduction 11

Output quantities (i.e., some voltages and/or currents of the circuit) are then
deliberately taken from the complete set of electrical voltages and currents
derived from Eq. (1.5) and (1.6).

The related causal model of this linear network established from both
Eq. (1.5) and (1.6) and represented as a block diagram is given in Fig. 1.10.

Now, both the input and the output are clearly identified from this
model representation. However, quantities related to each other by constitutive
element equations are separated by this kind of model description. This is
visible from Fig. 1.10, for example, for and An introduction to and
 an in-depth discussion of causal and acausal modeling concepts is given in
[Cel91].

Causal modeling is highly appropriate in the conceptual phase of systems
design when performing design space exploration under consideration of pos-
sible subsystem implementations in different engineering disciplines such as
mechanical, electrical, and computer engineering, respectively. On the other
hand, acausal descriptions are a prerequisite to the detailed design of systems

12 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

components aimed to be implemented in one discipline only. A consistent and
transparent transition of models over this barrier between modeling concepts
is a serious problem within the general design flow as depicted in Fig. 1.2.

Due to the overwhelming success of digital technology and of computer
engineering on the one hand and to an even increasing need to combine time-
continuous and event-discrete operations within one system on the other hand,
the objective of a combined mixed-signal modeling support became obvious.
One of the early approaches to an integration of analog and digital model de-
scriptions was PSpice7. Eldo-FAS 8, MAST9, and Verilog-A/MS10 were intro-
duced subsequently.

Meanwhile, there are two recent modeling languages in the market place,
which do not only combine time-continuous and event-discrete model descrip-
tions, but at the same time support causal and acausal modeling concepts in
different engineering disciplines. Modeling of truly heterogenous systems thus
becomes possible by means of Modelica11 and VHDL-AMS12. Modelica stems
from the domain of general dynamic systems, whereas VHDL-AMS originates
from computer engineering. Because both languages are aimed at heteroge-
nous systems modeling, it is not surprising that component libraries of analog

7PSpice is a trademark of Cadence Design Systems, Inc.
8Eldo and Eldo-FAS are trademarks of Mentor Graphics Corp.
9MAST is a trademark of Avant! Corp.
10Verilog and Verilog-A/MS are trademarks of Cadence Design Systems, Inc.
11 Modelica is a trademark of the Modelica Association
12VHDL and VHDL-AMS are the IEEE standards 1076 and 1076.1 respectively

Introduction 13

circuits were elaborated for Modelica [CSLS00]. Mechanical models as well
as thermal models are provided as VHDL-AMS packages [GCP01].

The following examples are intended to give some flavor to model represen-
tation in Modelica and VHDL-AMS, respectively. A more in-depth discussion
of VHDL-AMS is given in Chapter 3. An excellent introduction to the Mod-
elica language and to associated modeling concepts and many application ex-
amples may be found in [Til01]. The Modelica code outlined in the following
has been extracted from this source for comparison purposes.

The first example is an ideal electrical capacitor represented by an acausal
model. Fig. 1.11 shows the associated model codes. The constitutive differen-
tial equation of the component is denoted in both cases in quite a similar way
— except for some syntactical details. Conservation laws, however, are speci-

14 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

fied completely different: The sum of currents has to be stated explicitly in the
Modelica model, whereas this conservation law is set up in a transparent way
by the VHDL-AMS language compiler according to the definition of across
and through quantities.

Modeling of Boolean functions is again quite similar in both languages, but
clearly not a representation of digital circuits featuring signal delays. Fig. 1.12
details these fundamental differences in the second example, the Boolean func-
tion AND, specified first without and then with a propagation delay.

Introduction 15

The Boolean function coded in Modelica, as depicted in Fig. 1.12 a), takes
and produces Boolean signal values, whereas the output result is forwarded
instantly. This functionality is represented by the VHDL model in Fig. 1.12 c)
when deleting the string after Dly from the assignment to the output signal
Out. In both cases there is no explicit propagation delay of the output signal,
and the implemented function reflects the AND operation on Boolean signals.
Modeling of delays is, however, different. The now present string after Dly
of Fig. 1.12 c) causes the simulation system to schedule an event on Out sub-
sequently at Dly time units. This event on Out takes place with reference to
the input event, which causes the value change of the output signal. An inertial
delay model is used for that purpose. Such a behavior may be represented in
Modelica as well, but in a completely different way. The component denoted
as Lag and shown in Fig. 1.12 b) has to be connected to the output port of
the And model in Fig. 1.12a) for that purpose. Lag produces a delayed Boolean
signal by means of a D/A conversion of the primary output of And to an internal
signal by manipulating this continuous signal denoted as state in Fig. 1.12 b)
and, finally, by performing an A/D conversion back to a Boolean signal. A
detailed presentation of the associated waveforms is given in [Til01]. Now, it
becomes obvious that the own turf of Modelica is continuous signal modeling
and that digital behavior may be captured too, but not as straight forward as
in VHDL. Anyway, the bottom line from these examples is that the intended
model behavior may be expressed in either modeling language.

The selection of an appropriate or even the ”best” modeling language based
on its semantic expressivity and syntactical details is a rather hot topic in aca-
demic discussions occasionally. However, as long as the required fundamental
modeling concepts are addressed by the candidate language these criteria are
not really the key issues in practice. This situation is reflected by available
commercial simulators, which already support multi-language modeling. For
example, ModelSim13 or Scirocco14 accept mixed Verilog and VHDL models
for digital systems, whereas ADvanceMS15 or SMASH16 support combined
VHDL-AMS and SPICE models. The differently coded models are jointly
mapped by a front end compiler to intermediate data structures, a well-known
technique in software engineering.

A design engineer is mainly interested in CAD tools that support her or his
design flow at best and in how third party IP products may be exploited in
order to ease her or his design burden. Tools for simulation, synthesis, and

13ModelSim is a trademark of Model Technology, Inc.
14Scirocco is a trademark of Synopsys, Inc.
15ADvanceMS is a trademark of Mentor Graphics Corp.
16SMASH is a trademark of Dolphin Integration SA

16 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

test generation are provided by many vendors for VHDL-based digital design.
Representations of IP products also rely on this modeling language.

These are the reasons why VHDL-AMS is emphasized for the task of mod-
eling mixed-signal electronic circuits in the remainder of this book.

Chapter 2

SPECIFICATION OF BEHAVIOR

Denoting the behavior of functional blocks and of complete systems is of
utmost interest both to a modeler and to a circuit or system designer, who
should be the same person for obvious reasons. In practice, however, this is
not yet widely accepted. A separation of modeling and design tasks in many
cases causes severe problems, which may be avoided by both getting modeling
issues closer to a designer and physical facts closer to a modeler.

Abstraction hierarchies and resulting properties of models represented at
different abstraction levels are, therefore, discussed in this chapter. Analog
components and digital modules are outlined first. Mixed-signal systems need
a special view on the interaction of time-continuous and event-discrete signals.
Therefore, a new abstraction hierarchy is presented for such systems in order
to address this problem accordingly.

2.1 Analog Components
The abstraction hierarchy to be be applied to analog entities (i.e., electronic

components operating in both time- and value-continuous domains) has no
such long tradition, and it is not yet as widely spread in the analog and mixed-
signal circuit design community as its digital counterpart. Because of the re-
stricted modeling expressivity found in SPICE-like simulators — still being
the workhorse of many analog circuit designers — a structural view on design
entities, which exploits at the utmost two abstraction levels known as circuit
and macro level, respectively, has been biased. Meanwhile, there is an ab-
straction hierarchy in discussion, which is structured into a total of four levels
denoted as functional, behavioral‚ macro, and circuit level [SV95].

Specification of behavior at each of these levels is addressed in the follow-
ing. There is a wealth of excellent text books available on abstract specification
of time-continuous operating systems on the one hand (e.g., [Cel91, MF95,

17

18 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

SJN94]) and circuit theory and analysis on the other hand (e.g., [VS83, CL75]).
The reader is referred to this rich literature for a more in-depth study of these
topics.

Table 2.1 presents a summarized view on abstractions levels, associated
modeling concepts, and properties of signals of analog circuits, which is based
on [SV95]. The observable signals are time and value continuous at all of these
levels, but there is a significant change in the signal quality when moving in
a top-down manner through this hierarchy. From the behavioral abstraction
level downward, all observable signals of a model entity are subjected to con-
servation laws. These are the well-known Kirchhoff’s Rules in the electrical
domain, but similar conservation laws also exist in other physical domains.

These abstraction levels seem to be strongly related to analog circuit design
only — especially levels 3 and 4. However, an introduction of the abstraction
levels 1 and 2 — functional and behavioral — is well suited for modeling
purposes in other engineering domains.

As already mentioned, abstraction levels for time-continuous systems are
not yet that well-agreed upon as their counterparts for digital circuits and sys-
tems. According to Table 2.1 we will discuss these four levels in terms of
modeling methods and observable signals beginning with the highest abstrac-
tion level.

Specification of Behavior 19

Functional Level. The mapping from input to output signals takes place by
both algebraic and differential equations. This analytical specification may be
visualized by a signal flow representation as found in the bondgraph approach
[Tho90], for example. When denoting the inputs by the outputs by the
internal state signals of the model by and the time derivative of by
then the specification of the block functionality generally leads to a nonlinear
Differential Algebraic Equation system (DAE) in time domain summarized as

In the presence of a block with internal states showing a linear functional
relationship between inputs, states and outputs, respectively, then the general
implicit DAE formulation of Eq. (2.1) may be represented by the well-known
explicit form given in Eq. (2.2).

A more complex functionality of a system is derived from an aggregation
of simpler blocks which are each specified at functional level. The resulting
representation yields a block diagram, a wide spread specification means in
automation and control engineering as well as in digital signal processing as
illustrated in Chapter 1. Several specification entry and validation tool sets
support this kind of functional block aggregation such as the Matlab/Simulink
suite or the Khoros1 environment [RW91].

Behavioral Level. A specification of functionality takes place by means of
DAE systems. This seems to be very similar to the functional level, but there
is a significant difference in the quality of the still time- and value-continuous
signals: conservation laws have to be considered. Now, each signal is com-
posed of two quantities derived from a branch definition: an effort and and a
flow partition. These physical quantities are voltage and current, respectively,
in the electrical domain. In general, behavioral level models are formulated
using hybrid port definitions as a basis. Linear n-port blocks may thus be mod-
eled using the following well-known hybrid equations:

1 Khoros is a trademark of the University of New Mexico

20 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

Taking internal state variables of the model into consideration, the general
relations for a nonlinear block then result in a DAE system

which has to be evaluated — as for functional level models — by numer-
ical integration and nonlinear equation solving methods during transient sim-
ulation. Note that conservation law considerations require that the previously
separated input and output signals of an entity specified at functional level
have to be combined into a voltage and current vector each, respectively, as
given in Eq. (2.4).

Macro Level. This is the highest level of abstraction available in SPICE-
like simulators due to their lack of support of direct DAE system specifications
as needed at the behavioral and functional level, respectively. The modeling
method simply consists of a hierarchical, stuctural composition of ideal func-
tional blocks and components specified in their behavior by some set of linear
or nonlinear equations represented in polynomial form. These relationships
are then mapped accordingly to single or multiple value-controlled sources.
Because of the considerable work having been done in this area over the past
20 years or so [CC92], macro modeling is still a common modeling approach
in integrated circuit design practice as will be demonstrated in Chapter 6. Its
relevance, however, is expected to decrease in the years to come.

The generic macro level model of an operational amplifier — the funda-
mental building block of many analog and mixed-signal circuits — as depicted
in Fig. 2.1 highlights the underlying basic modeling method. In addition to
primitive components such as resistors, capacitors, and transistors there are
controlled voltage sources present in this model. By appropriately defining the

Specification of Behavior 21

control functions, it is possible — to a certain extent — to represent a mapping
of the input voltage waveform to the resulting output voltage in terms of accu-
racy. Note that macro models, in general, feature a galvanic separation of the
input from the output signal on one hand as visible from Fig. 2.1 and a mapping
of input to output signal values on the other hand by means of some algebraic
specification introduced as polynomials. In contrast to Eq. (2.3), the calcula-
tion of companion voltages or currents at input and output ports, respectively,
becomes much easier now.

Circuit Level. At this abstraction level a purely structural description is
exploited, which consists of instances of passive and active primitive compo-
nents and their interconnection. This description is also known as a netlist, or
as a schematic when represented in a graphic-symbolical form. The signals
to be considered here are again voltage and current waveforms in DC and in
time domain. Figs. 2.2 and 2.3 depict a nonlinear CMOS circuit schematic and
the resulting input and output waveforms generated from a transient simulation
run.

At this point the question arises how a behavioral description is introduced
to a circuit level simulator when using just a netlist representation of the block
to be analyzed. The basic approach is known as the functional structure of the

22 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

circuit which consists of both an interconnection of primitive entities (i.e., the
topology) and their behavior, denoted either as part of an external component
library or directly in the simulator program code as found in the early versions
of SPICE. The topological structure and the component behavior denoted as
sets of equations are then used by the simulator to set up internal data struc-
tures according to an underlying analysis method such as the Modified Nodal
Analysis [HRB73].

A netlist therefore, is a bipartite graph consisting of a set of vertices
denoted as (the pins), a set of vertices denoted as (the nodes), and a set
of edges denoted as E (the connecting wires) resulting in

The connectivity relation C is given by

such that any vertex may be connected to many but
each is to be connected to just one only. This restriction follows from the

Specification of Behavior 23

semantic of — it denotes the carrier of a unique value of the electrical
potential (the node voltage) and it is not feasible, therefore, to assign different
values to one and the same node. As an example, Fig. 2.4 depicts the specifi-
cation of behavior for a primitive component. A voltage/current characteristic
function (i.e., the constitutive element equation) denoted as g is introduced
for this purpose, which is defined with respect to the vertex definitions given
above. Note that g may either be a linear function as for an ohmic resistor or a
nonlinear one as required to describe a general resistance element.

From the definitions of signal properties given above it becomes clear that
models at any of the levels circuit, macro, and behavioral as denoted in Ta-
ble 2.1 fulfill the requirements of a behavioral model. Their functionality is
described by equations or algorithms (explicitly or implicitly) and their inter-
face signals are subjected to conservation laws.

A problem rises from the situation of denoting both an abstraction level and
a fundamental property of models at different abstraction levels by one and the
same term: ”behavioral”. In the author’s view this is one of the main reasons
for the considerable confusion one notices in the circuit design and modeling
communities when it comes to discussions on ”behavioral” models.

2.2 Digital Modules
Abstraction hierarchies for digital function blocks are introduced as found

in literature and discussed in more detail because they are the formal basis for
model representation by means of hardware description languages.

In a long ongoing development process a meanwhile widely accepted order
of abstraction levels for digital design techniques was developed (e.g. [Arm89,
GV94]). Levels of abstraction are thus well defined in the digital domain.
They are addressed in the following, taking the summarized representation of
Table 2.2 as a basis. From the viewpoint of the hardware modeler, the levels of
abstraction form the foundation for design object representation.

Circuit Level. The circuit consists of interconnected active and passive
components. Circuit behavior within time domain can be represented by means
of a system of nonlinear differential equations. This level does not really be-

24 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

long to the digital abstraction hierarchy, it acts as a link to physical representa-
tions of digital circuits as discussed in the previous section.

Gate Level. On the gate level combinatorial and sequential blocks are the
primitives. This level is also known as the logic level. The Boolean circuit
algebra is represented by gates with additional simple memory elements such
as Flip Flops. Specification is achieved with Boolean equations and state tran-
sition tables. However, the Boolean circuit algebra does not directly address
the important delay time of the components. Therefore, time values must be
attributed by additional models.

Register Transfer Level. On this level complex functional blocks are pro-
vided, such as register, counter, multiplexor, and storage modules. Specifi-
cation takes place similar to the gate level, however, with enhanced Boolean
equations, truth- or state transition tables. In addition, microoperations are
addressed.

Chip Level. The chip level is located above the register transfer level. This
level addresses the abstract modeling of microprocessors, memory, and bus
controllers as primitive elements. Specification results from concurrently de-
noted descriptions of the input/output functionality. Therefore, this level is
also known as the algorithmic level. Software designers determine the behav-
ior on this level with programs by means of instruction sets of components.
Programming on this level is addressed by the term microprogramming.

PMS (Processor, Memory, Switch) Level. The topmost level features pro-
cessors, memory banks, and bus systems. The design of complete processor
and system architectures is the main objective at this level. At the same time
this level represents the connection to the functional levels of information pro-
cessing systems addressing software architectures. Spatial and temporal order-
ing of activities (i.e., allocation and scheduling) as well as communication is-
sues are of main interest on this abstraction level, which is sometimes donoted
as system level.

Views, abstraction levels, modeling methods, structural primitives, and time
models as summarized in Table 2.2 are related to the observable values pro-
duced by models of digital systems. These models may be represented in a
hardware description language such as Verilog or VHDL. We will focus on the
latter in the following for the reasons already mentioned in Chapter 1.

2.3 Mixed-signal Systems
Mixed-signal circuits and systems constructed thereof are characterized by

the fact that they operate in time domain, but they generate and consume both
value-continuous and value-discrete signals. Fig. 2.5 depicts the typical data
exchange within a mixed-signal system. The analog partition derives value-
and time-continuous signals from numerically solving a generally nonlinear
DAE system, whereas the digital partition works on value- and time-discrete

Specification of Behavior 25

signals determined from an event processing algorithm. The signal values have
to be converted from one domain to the other in order to accomplish the com-
munication as depicted in Fig. 2.5.

An even more difficult operation consists of combining the analog and dig-
ital time base of these partitions, respectively, as to accommodate their inter-
action. Merging of time bases yields the universal scale of the mixed-signal
system as depicted in Fig. 2.6. The distinct time points on the analog time scale
stem from the numerical integration algorithms exploited for the solution of the
DAE system. The actual time point is thus determined from incrementing the
past time by a chiefly nonconstant, but discrete amount: the integration time
step. Note that Fig. 2.6 gives only a simplistic view on the analog-digital in-
teraction. In general, roll-backs on the time scale have to be considered, which
are a major challenge to simulation tool providers.

26 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

Each of the partitions may be denoted on either abstraction level as long as
the conversion of the value domains and the time bases are addressed. This
requirement is demonstrated for an n bit D/A converter as depicted in Fig. 2.7.
The digital systems partition has to provide a bit-level representation of its
computation no matter how the calculation has been performed internally. The
delivery time point of the result is implicitely given by an event. This situation
is depicted in Fig. 2.7a).

An abstract functional model of the converter simply maps the binary data
word denoted as to the time- and value-continuous signal according to the
detailed conversion algorithm. Its result becomes available almost at the same

Specification of Behavior 27

point in time as the input data arrives. This is highlighted on the time scale
next to the block output signal. Fig. 2.7 b) depicts a behavioral model of the
converter according to the terminology of Table 2.1, which is a refinement of
the functional model as easily visible from Fig. 2.7. Its output now consists of
a voltage and current waveform, respectively, according to the generic defini-
tion of behavioral models. This is reflected in both the conversion algorithm
and in the required v/i characteristic at the output pin of the block. More-

28 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

over, the conversion time is now part of the block specification, and an
additional connector is introduced. However, the output waveform still
unveils a digital-like behavior as highlighted on the associated time scale. In
contrast, Fig. 2.7 c) depicts the schematic of a very simple, but feasible circuit
implementation. Because of the practically analog structure of the circuit —
the multiplexors in the schematic may be viewed as switches which, in turn are
implemented by transistors — the output waveform is now much more analog-
like as visible from the time scale next to the block output. It becomes clear
that the output waveforms of the behavioral and the circuit model, respectively,
are not identical, at least not for those time intervals in which transitions of the
output signal take place. Despite of a definition of pin signals as electrical
quantities, behavioral models of converters, in general, do not reflect the de-
tailed circuit behavior (i.e., the signal waveforms) of a block as long as the
underlying modeling concept relies on an abstract view of their functional-
ity only. Pin compatibility, a frequently stated requirement when it comes to
model hierarchies, cannot be provided in an easy way. This is because both the
amount of connectors and their properties differ across the abstraction hierar-
chy as illustrated in Fig. 2.8.

When considering different implementation styles of one and the same func-
tionality, one is faced with a design space which, in many cases, covers the
whole range of signal and operation regions. This is highlighted for some pos-
sible implementation styles of a filter block — a rather simple and, at a first
glance, a purely analog functional block operating in frequency domain. Al-
though aimed to derive the output signal amplitude and phase in this domain
from a manipulation of the input signal, the real block operation takes place
in time domain. The basic specification of the filter behavior consequently is
denoted by differential or by finite difference equations. The resulting filter
characteristic in frequency domain is then derived from these representations
by means of well-known transform operations. However, depending on the
chosen implementation style of the abstract block functionality, the resulting
module may be viewed as either an analog, a mixed-signal, or a digital circuit,
respectively, as detailed in Table 2.3.

A similar situation arises with the representation of behavior of at least A/D
and D/A converters in mind because these functional blocks provide the direct
link between the analog and the digital subsystems as depicted in Fig. 2.5 —
they are in some sense part of both domains. Rather different representations
(i.e., modeling styles) may be applied, therefore, for these blocks especially at
the behavioral abstraction level. Although the port signals of such a model have
to consider conservation laws, one easily may denote the intrinsic conversion
approach — such as flash, successive approximation, etc. — directly by
an algorithmic (i.e., more digital-like representation) or by some other, more
analog-like modeling style. The effects of different modeling styles as high-

Specification of Behavior 29

lighted in Fig. 2.7 are addressed and discussed in more detail in Chapter 5 and
6, respectively.

A redefinition of abstraction levels seems to be appropriate for mixed-signal
circuits at least because of the multiple meanings of the term “behavioral”. In
addition, terms for the denomination of abstraction levels as given in Table 2.1,
which stem from views and concepts coined with SPICE-like simulators in
mind, should be updated in order to reflect the new and fundamental model
representation features supported by modern HDL.

Fig. 2.8 visualizes the proposed abstraction hierarchy, which is subdivided
into functional and behavioral model classes. The functional model class may
consist of several abstraction levels. A conceptual level may be present in this

30 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

class, which possibly exploits temporal logic and some flow calculus for func-
tionality specification. However, the impact on mixed-signal systems model-
ing of such an abstract representation is not yet clear. The analytical level of
Fig. 2.8, therefore, is assumed to be the highest abstraction level of practical
interest for the time being.

Analytical Level. The topmost level of the functional model class addresses
a specification of functionality by idealized analytical equations for continuous
signals and by abstract processing for discrete signals. The fundamental con-
cept on this level is causal modeling.

Algorithmic Level. Behavioral models usually exploit the acausal model-
ing concept for continuous signals, which are subjected to conservation laws,
and causal/acausal representations of event processing algorithms. Both the
control and the data flow within the model have to be denoted at algorithmic
level. The specification of event processing, which addresses different timing
resolutions, is thus straight forward. Continuous behavior is refined into dis-
joint operation regions of the model, which are to be represented accordingly
by sets of analytical equations (i.e., data flow). Selections on the explicit equa-
tions to be executed at a given point in time take place according to parameter
values, which define the active operation region (i.e., control flow).

Procedural Level. This level addresses refinement operations of an algo-
rithmic model into modules. The resulting modules (i.e., procedures of the
model code) represent either model entities of available building blocks or
processing units in a similar way to structured software code. The procedural
abstraction level relates to the macro level of Table 2.1. However, the latter is a
subset of this level because a macro is just a primitive instance of a procedure
in terms of software engineering.

Component Level. The component level is aimed at a direct representation
of stuctural netlists of circuits, which are composed from primitive elements,
such as transistors or logic gates. Their behavior has to be defined as part of
the associated component library models.

The interrelation between conceptual models, their executable representa-
tions, and the executing simulator is highly complex. Fig. 2.9 details this
relationship. An appropriate support of model instances is thus mandatory.
This is covered by highly expressive modeling languages such as VHDL-AMS,
which originated recently from the well-known hardware description language
VHDL for digital systems. This HDL is discussed in the following Chapter.

Specification of Behavior 31

Chapter 3

MODEL REPRESENTATION

Plenty of good literature is available on digital hardware description lan-
guages, especially on VHDL, and on synthesis algorithms, which exploit such
languages as a means for specifying the functionality of digital components
and systems. Continuous time and mixed-signal or multi-nature modeling,
however, is not yet covered sufficiently. In [Cel91] the reader will find a de-
tailed discussion on modeling of time-continuous systems. An introduction to
fundamental numerical algorithms for solving differential-algebraic equations
is given in [BCP89]. Modeling issues with an emphasis on analog circuits is
addressed in [MF95] and [BLR95].

VHDL-AMS has been proposed as a highly expressive description language
for executable representations of mixed time-continuous and event-discrete op-
erating circuits and systems. The language reference of VHDL-AMS is given
in [IEE99], the document of IEEE Standard 1076.1. [Men99] is referenced as
an example for a user’s manual for a commercial simulator. Finally, in [VB97]
the modeling of multi-nature systems using VHDL-AMS is discussed by sev-
eral authors, thus giving a first insight into this emerging area.

3.1 Fundamentals of VHDL
VHDL stands for VHSIC Hardware Description Language, whereby VH-

SIC is the abbreviation for Very High Speed Integrated Circuits. In 1980 the
VHSIC project was launched by the US Department of Defense. It is regarded
as an attempt to standardize the hardware description language. To that date,
several basic approaches for modeling existed on the register transfer level in
addition to the Boolean equations and SPICE circuit net lists as well as stan-
dard programming languages such as Basic, Pascal, or Lisp. These languages
were used mainly to implement procedures for Petri networks or decision trees.
In 1983 Texas Instruments, IBM, and INTERMETRICS were assigned to de-

33

34 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

Several architectures can now be defined and exploited for this entity in
VHDL, whereby the designer may choose the best suitable architecture for her
or his purposes without having to face restrictions or changes in the function-
ality.

3.1.1 Behavior
Behavior specification corresponds with an algorithm that produces quasi-

random sequences by calculating a primitive polynomial with coefficients of
modulo 2 within an infinite loop as defined in Fig. 3.3.

velop an implementation after predefining the requirements for VHDL. Lan-
guage specifications were completed in 1987, and the first simulator was made
public. In the same year IEEE began the implementation of their own VHDL
version, which became the industrial Standard IEEE 1076 in the year of 1988.

As an example for the modeling capabilities of VHDL a register with linear
feedback (LFSR) will be discussed. With an initial value of unequal zero, a
cyclic sequence over all bit vectors with 3 bits unequal to zero is to be gener-
ated. Fig. 3.2 (left side) shows the block circuit diagram.

In VHDL the entity LFSR is defined in Fig. 3.1 as a black box with one
input and three outputs — as to be seen in Fig. 3.2 on the right side.

Model Representation 35

3.1.2 Data flow
If the specification is to be orientated towards the data flow in the block,

a feedback is constructed with three guarded signal assignments as given in
Fig. 3.4:

36 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

3.1.3 Structure
The architecture structure is the direct result of the schematic as shown in

Fig. 3.2. Structure specifications can be mapped directly to VHDL as detailed
in Fig. 3.5.

3.1.4 Relations of models
All three models (i.e., architectures of the LFSR entity) accomplish the same

tasks and may be interchanged at will. For instance, a testbench, which con-
tains a stimulus for the LFSR, can invoke all three models without changing
the overall behavior. The VHDL code of Fig. 3.6 shows how the data flow-
oriented specification is instantiated in a testbench and is stimulated by a clock
signal.

3.2 Introduction to VHDL-AMS
The basic concepts of VHDL form the foundation of the extension of this

hardware description language to the modeling domain of Analog Mixed Sig-
nal (i.e., AMS) resulting in the new IEEE Standard 1076.1-1999. These con-
cepts of VHDL are summarized in the following:

Model Representation 37

Model composition from communicating, concurrently active design enti-
ties.

Strict separation of the unique interface description and the functional de-
scription(s) of an entity.

Execution of the model description based on the Stimulus/Answer paradi-
gm. Events are the only stimuli considered, thus resulting in an emphasis
on digital circuits and systems.

Definition of the simulation process on top of an event-driven simulation
cycle.

38 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

The simulation process of a model encoded in VHDL is thus built around
the event-driven simulation cycle as outlined in the following.

Simulation process:

3.2.1 Design objects
The description of a design object denoted as an entity consists of its in-

terface declaration, of one or more architectural bodies, and of an optional
configuration declaration. Their syntactical details are as follows:

Entity Syntax:

The IEEE Standard 1076 of VHDL has been extended considerably to cope
with modeling requirements in the time-continuous domain and especially with
mixed-signal, multi-nature systems (i.e., event-discrete and time-continuous
behaviors of heterogeneous models). This objective is depicted in Fig. 3.7.

while transactions remain to be processed
increase time until a transaction has to be processed
update the state from the previous transactions
determine events caused by updates
perform a simulation cycle
based on new state and events

end while

EntityDeclaration ::=
entity Identifier is

EntityHeader
EntityDeclarativePart

[begin
EntityStatementPart]

end [entity] [EntitySimpleName];
EntityHeader : :=

[FormalGenericClause]
[FormalPortClause]

GenericClause : :=
generic (GenericList) ;

PortClause : :=
port (PortList) ;

Architecture Syntax:

ArchitectureBody ::=
architecture Identifier of EntityName is

ArchitectureDeclarativePart
begin

ArchitectureStatementPart
end [architecture] [ArchitectureSimpleName];

ArchitectureStatement ::= ConcurrentStatement

Model Representation 39

A fundamental problem arises when combining time-discrete and time-con-
tinuous signals in mixed-signal circuits: The semantic of connections must be
determined and implemented by appropriate methods as detailed in the previ-
ous chapters. This is highlighted in Fig. 3.8.

3.2.2 Extensions to VHDL
Obviously, the range of VHDL was by far not sufficient to suit the additional

requirements of mixed-signal systems. Therefore, extensions to design objects

40 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

and declarations, to assignments, to attributes, and especially to the simulation
cycle were necessary. These extensions to the original VHDL language are
depicted in Fig. 3.9.

3.2.2.1 Quantities and Terminals

Descriptions of value- and time-continuous variables and the enforcement
of conservation in different physical domains, such as Kirchhoff’s Rules in
the electrical domain, are possible when introducing the basic concepts of
quantities and terminals.

The object class quantity has the following properties: Representation of
time-dependent functions, partially continuous with a finite number of discon-
tinuities in one time interval, assignment of physical dimension and existence
of derivatives and integrals, which may be viewed as membership functions.
Quantities may be defined as free, branch, or source quantities, Fig. 3.10 shows
their classification. Note that mixed descriptions in terms of domains, modes,
and technologies are achievable with this single basic concept.

The enforcement of conservation is of considerable interest when modeling
physical systems at all, except for the functional modeling level. It has been

Model Representation 41

tackled in VHDL-AMS by a graph-based concept. Branch quantities with ref-
erence to terminals and natures are used for this purpose as detailed in the
following.

Quantities between two terminals represent the unknown variables
(branch quantities) in a conservative system of equations:

– across quantity: difference of potentials

– through quantity: flow in a branch.

Terminals are assigned to a physical domain known as nature, which has
to be defined appropriately.

Fig. 3.11 shows how two branches (I1, I2) between two terminals (T1,
T2) related to the nature Electrical as shown in Fig. 3.12 may be defined,
thus resulting in V as the unique voltage and inI1, I2as the branch currents
between T1 and T2, respectively.

3.2.2.2 Conservation Laws

Conservation laws have to be enforced independently of a user-defined par-
titioning of the entire model into design entities. This implies that the interface
description of entities requires an enhancement. The connection pins of an
entity, denoted as port in VHDL terminology, may now carry waveforms of

42 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

different qualities: digital signals and continuous quantities of some physical
domain with or without conservation requirements as given in Table 3.1 and
depicted in Fig. 3.7. The new interface description syntax of VHDL-AMS is
given in the following. Note that the compatibility for VHDL 1076 is accom-
plished by a blank PortAttribute, which is interpreted as equivalent to the
signal attribute.

Definitions of port attributes, internal nodes and branches as well as external
branches are first addressed for nonconservative ports. Fig. 3.13 a) depicts a
functional block featuring one input and output each. The port signals are time
and value continuous but not subjected to conservation laws. The block may
represent the functionality of some component being part of a control loop.

The port quantities are thus part of the class non-conserved as depicted in
Fig. 3.10. They are denoted as free quantities in VHDL-AMS and are derived
either from the port declarations as shown in Fig. 3.13 b) or from a direct

port (PortAttribute NameList: [Mode] Type)
PortAttribute ::= signal | quantity | terminal

Model Representation 43

definition for quantities internal to an architecture according to the general
definition syntax:

Conservative signals are defined according to Fig. 3.11 by terminals acting
as nodes for branches. This is highlighted for block EB of Fig. 3.14, which
features both conserved and non-conserved connectors.

quantity identifier_list : [in | out] subtype_indication
[:= static_expression]

44 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

In addition to the free input quantity FQ there are three port terminals
P1, P2, and P3 as well as an internal terminal TI acting as electrical nodes.
Terminals are formally defined by

terminal identifier_list : nature_identifier;

They do not contain any data. Quantities related to terminals are to be de-
fined as part of the architecture declaration as given in Fig. 3.14 b). Note that
these branch quantities address implicitly the reference of the nature Electri-
cal (i.e., the electrical ground).

Model Representation 45

Eq. (3.1) denotes the DAE of a block featuring free input and output quan-
tities and respectively, in addition to branch quantities. This forms
the basis for mixed causal/acausal specifications. Eq. (2.4) as introduced for
the description of a behavioral model is then just a subset of Eq. (3.1). Con-
sequently, both functional and behavioral models at any abstraction level of
Table 2.1 or Fig. 2.8 may be combined into one entity according to Eq. (3.1).

Modeling of analog behavior is supported in quite different ways and is
demonstrated by the simple circuit example depicted in Fig. 3.15. Fig. 3.15b)
denotes its description in SPICE syntax.

The equations defining component behavior are not directly visible from
Fig. 3.15, they are implicitly assigned to key characters for component classes
in SPICE syntax (e.g., ’R’: Resistor, ’C’: capacitor, ’X’: subcircuit). In con-
trast, behavior definition is explicitly denoted in VHDL-AMS. Fig. 3.16 details
entity declarations for resistor and capacitor components, respectively. Inital
conditions regarding the charge of the capacitors are omitted from Fig. 3.16 for
simplicity reasons. The simulation model of the circuit of Fig. 3.15 may now
be stated in two different ways: either as a structural or as an equation-based
description at component level as detailed in Fig. 3.17. Note that both models
are behavioral descriptions of the RC circuit of Fig. 3.15.

These simulation models compare nicely to the following digital models
at gate level: Fig. 3.17 a) to a gate netlist and Fig. 3.17 b) to a data flow
description of a set of Boolean equations, respectively.

46 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

3.2.2.3 Representation of Behavior

The description of the functionality of a model is captured in the architec-
tural body. In addition to the concurrent statements of VHDL used for dig-
ital circuits and systems (i.e., component instances, signal assignments, and
process statements), there now are simultaneous statements available for the
specification of continuous behavior by means of mathematical equations as
follows:

architectureStatement ::=
concurrentStatement | simultaneousStatement

simultaneousStatement ::=
simpleSimStatement | compoundSimStatement

[label:] [pure | impure] simpleExpression
== simpleExpression [toleranceAspect];

Simultaneous statements can be either simple or compound. The latter form
may consist of a procedural or a conditional use statement. The simple state-
ment as defined above unveils two interesting properties. First, it is a noncausal
formulation of an equation. This means that the == symbol denotes equality

Model Representation 47

in the mathematical sense, not an assignment such as the < = symbol in digital
data flow descriptions. As a consequence, the modeler has no need to formu-
late explicit equations. The more general implicit differential algebraic equa-
tion form (DAE) may be used directly instead. The second interesting property
is related to the optional tolerance aspect of the statement. This is intended to

48 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

specify the numerical accuracy of the equality, a very general way to deal with
numerical properties. Usually, a modeler is interested only in accuracy aspects
but not in selecting solution methods for numerical integration, for instance.
Appropriate solvers are best provided by the implementors of a VHDL-AMS
simulation engine, whereas a modeler specifies application specific accuracy
levels only by means of tolerance aspects.

Statements within the architectural body of a design entity may consist of
both concurrent and simultaneous statements — as already detailed. This is
of special interest to a modeler because it supports a consistent description of
design objects operating in mixed-mode without an artificial separation into
event-discrete and time-continuous partitions. Mixing up event-oriented and
time-continuous behavior in many cases results in dealing with model discon-
tinuities. This problem is addressed by the break statement used for both
initialization purposes and for discontinuity handling.

A simple example of an 1 bit D/A converter as shown in Fig. 3.18 illustrates
its usage. The mixed-mode property of the entity DAC is easily visible from

Model Representation 49

its interface description: There is both a signal and a terminal definition at
ports. Obviously, the model addresses the behavioral modeling at algorithmic
abstraction level. The branch quantities related to the terminal A linked to the
nature Electrical are defined in the architectural body. There are four state-
ments in the executable part of the architectural body: A signal assignment, a
compound simultaneous statement (if ... use ... else ... end use), the
break statement which is sensitive to an event on signal S and a simple si-
multaneous statement. The output voltage of the D/A converter (i.e., the value
of V) is recalculated each time the value of S changes. Note that additional
equations or definitions are not required in order to enforce conservation laws
at port terminal A.

3.2.2.4 Model Flow Using VHDL-AMS

VHDL-AMS offers a variety of advantages for mixed-signal and for general
systems modeling. This is due to a consistent and easy way to integrate time-
continuous and event-discrete computation, and last but not least, due to the
presence of a comprehensive set of design tools for the automation of digital
signal processing. The refinement of functional blocks and of components as
outlined in Fig. 1.2 is thus well supported. This situation is detailed in Fig. 3.19
for the flow of models in mixed-signal, multi-nature systems.

However, two major drawbacks of VHDL-AMS should be mentioned. First,
generic modeling across the borders of physical domains and engineering dis-
ciplines is not supported. A simple example demonstrates this drawback.

50 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

Fig. 3.20 depicts a generic harmonic oscillator in time domain. This block
computes the output from the inputs and by an ordinary differ-
ential equation (ODE).

When trying to refine the generic model of Fig. 3.20 into an electrical and a
mechanical version of a behavioral model one is faced with a major problem.
Although the architecture sections of these models are almost identical, the
entity declarations are not as obvious from Fig. 3.21.

This situation arises from the fact that terminals (i.e., the objects acting as
anchors for branch quantity definitions) are to be linked to an explicit nature:
in our case either Electrical or Mechanical. Object-oriented modeling princi-
ples such as inheritance and implementation are not present in VHDL-AMS.
This restriction does not affect modeling of mixed-signal circuits too much
because circuit design usually takes place in the electrical domain only. Mod-
eling of multi-nature systems, however, is constrained by this lack of generic
modeling features.

The second restriction is noticed when trying to refine functional models
into behavioral ones. Free port quantities of functional models and branch
quantities present at the ports of behavioral models are defined in VHDL-AMS
in a completely different way. The latter have to be declared as part of the
architecture section of the model based on port terminal definitions —
completely in contrast to the input and output quantities of functional models.
Thus, there is no automatic and universal way to model refinement across the
functional-behavioral barrier. Fig. 3.22 visualizes this situation. The quality

Model Representation 51

of ports differs in the functional and behavioral model classes, respectively,
excluding port signal connectors, however. In addition, behavioral models
sometimes feature connectors which are not present at higher abstraction lev-
els. This specific property as highlighted in Fig. 3.22 was detailed in Fig. 2.7.

3.2.2.5 Multi-Nature Systems
The modeling features of VDHL-AMS have been highlighted so far for elec-

trical circuits only. Now, a simple multi-nature modeling example will demon-
strate that all required concepts and syntax elements are already present for this
purpose. First, we need to extend our set of natures (i.e., physical domains).
The following package example summarizes the definitions for two additional
physical domains. They are given as part of a package identified by the name
NaturePkg as illustrated in Fig. 3.23.

52 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

A combined electrical and thermal model of a diode demonstrates how the
effects of self-heating on its electrical characteristics may be modeled for a
multi-nature application in an easy and consistent way [CB97]. This model is
outlined in Fig. 3.24 and 3.25, respectively.

Passing of parameter values is accomplished by the generic mechanism of
the entity declaration. There is one terminal port for the nature Thermal
and two terminal ports for the nature Electrical. The associated branch
quantities are defined in the architectural body. In addition, the two free quan-
tities denoted as Q and VT, respectively, are defined as well. The first three si-
multaneous equations within the executable part of the architecture denote
the electrical behavior of the nonlinear diode. Note the differential equation re-
lating the charge Q to the current IC. The thermal voltage is now determined by
means of the constants Boltzmann and ElemCharge taken from NaturePkg as
a function of the temperature Temp, which in turn is one of the thermal branch
quantities. The second one, Power, is calculated from the electrical branch
quantities V and ID in the last equation. The diode current ID thus depends on
the junction temperature via the thermal voltage VT.

Model Representation 53

54 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

3.3 Mixed-Signal, Multi-Nature Modeling Example
The increasing complexity of information processing products and the pres-

sure of design to market requirements are the main reasons for a change in
the design process of these products, resulting in an emphasis of timely design
validation of virtual prototypes instead of breadboarding. This reveals possible
concept errors long before an implementation of real prototypes takes place.
On the other hand, such products generally are too complex to be completely
modeled at lower (i.e., more accurate) abstraction levels. A need of a sensible
mix of models on different abstraction levels thus arises resulting in the neces-
sity to represent and to execute models both in different domains and at several
abstraction levels. The purpose of such a system model is to support an assess-
ment of the conceptualization and the refinement according to the design flow
outlined in Fig. 1.2 in terms of meeting initial target specifications. Modeling
of multi-nature systems in context with mechatronic and microsystems is an
evolving application area of model engineering [Rom98, Kas00].

The process of model definition, refinement, and assessment is demon-
strated in the following by means of a depth gauge — a safety critical device
for deep water divers. The demonstrator was built with system simulation of
multi-nature design objects in mind. It is a fairly complex, but still easily com-
prehensive example on how to construct a simulation model in three physical
domains featuring both time-continuous and event-discrete (i.e., mixed-signal)
behavior. In addition, synthesizable models of digital signal processing units
are incorporated at register and algorithmic levels as defined in Table 2.2.

All VHDL-AMS models are operational and were thoroughly tested by
means of the ADVanceMS simulator from Mentor Graphics Corp. Unfortu-
nately, the complete set cannot be presented here for space restriction reasons.
However, all models of this depth gauge and additional information on other
complex multi-nature, mixed-signal modeling projects are available from the
author´s web site.

3.3.1 Partitioning the System
The models are partitioned in two ways. The whole system is subdivided

into smaller entities, which are each modeled as a unit. Furthermore, there
are several models (i.e., architectures) present for each unit. They differ in
terms of abstraction levels and accuracy or represent different implementation
styles. The architectures suited for system simulation are emphasized in the
following according to Fig. 3.26.

The functional partitioning of the model of a depth gauge denoted Virtual
Diving Computer (VDC) [Klu01] is based on considerations of

functional decomposition

Model Representation 55

entity reuse

complexity

testability.

The different architectures can be classified by means of the architecture
names. Most of them are self-explanatory.

The simple architecture is limited to fundamental features only, it is mod-
eled in the functional domain. It thus yields a low simulation cost and
idealized results.

The digital_algorithmic architecture is a high-level description using a
synthesizable subset of VHDL. These models have to be passed to a sched-
uling and resource allocation tool prior to mapping to a target library. For
the demonstrator this was accomplished with the Behavioral Compiler1.

The digital_RTL architecture is a register-transfer level description, again
exploiting a synthesizable subset of VHDL. These models may reflect mul-
ti-clock or even asynchronous operating designs and are easily mapped to
target libraries. The Design Compiler2 was exercised for this purpose.

The beh architecture is a behavioral model of analog or mixed- signal com-
ponents. This model reproduces timing and signal waveforms of the entity
including major hazards and glitches.

The eldo architecture is used to incorporate SPICE (i.e., macro and circuit
level) analog models.

1Behavioral Compiler is a trademark of Synopsys, Inc.
2Design Compiler is a trademark of Synopsys, Inc.

56 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

3.3.2 Models of VDC functional units
3.3.2.1 Testbench

The entity denoted Testbench is the top level module. It contains the en-
vironmental description and the device under test. The Testbench is self-
contained and is used to define the interconnections of design entities. More-
over, it selects the architectures to be used. Its code is given in Fig. 3.27.

Model Representation 57

3.3.2.2 Environmental Model
The environment is modeled such as to produce all the input data needed to

test the depth gauge by model execution. As a consequence, only observable
effects for the device under test are reproduced.

The generic timescale of Fig. 3.28 can be used as a bypass for simulators
that do not allow a change in the resolution limit for the type time. Simu-
lations based on femtoseconds reduce the guaranteed simulation time to 2.14
microseconds only. However, typical application scenarios cover several hours
or even days. This requires range extensions beyond or changing the res-
olution limit to milliseconds. If both are not feasible then a timescale as to
shrink the simulation duration may be used instead.

The port terminals Pressure_sensor and Temp_sensor are modeled as sig-
nal sources, which provide pressure and temperature potentials without side
effects. These potentials may be derived from the diver’s position. To simplify
the model, only the resulting potentials are addressed in the following two ar-
chitectures. The first one is characteristic for lake diving, the second one for
ocean diving.

58 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

The model for the lake dive outlined in the following reproduces the strong
coherence between diving depth and water temperature. Such a temperature
profile is characteristical for deep lakes in summertime. The water surface is
heated by the sun, whereas wind and day/night changes form a several meter
deep warm surface layer. Below this layer the temperature drops rapidly to
values less than 10 degree Celsius.

3.3.2.3 Temperature Sensor

The temperature sensor to be used is a platinum resistor made in thin layer
technology on substrate — an off-the-shelf product. We use a sen-
sor with a temperature sensitivity (Tk) of as specified in IEC 751.
These sensors are quite popular in automotive applications, thus resulting in
low costs and good availability of subcomponents. The sensor is instantiated in
a voltage divider circuit together with the constant resistor Rfix. The temper-
ature information is represented by the output voltage Uout. The multi-nature
property is thus obvious.

The simple architecture is based on the sensor Nite PT1000 from Heraeus,
Inc. as depicted in Fig. 3.30. Thus, the modeling process is constrained to an
exploitation of commercially available components.

3.3.2.4 Analog/Digital Converter

The conversion is accomplished in a rather generic way. The underlying ab-
straction level is the algorithmic level. This is reflected in the basic converter
function denoted as Convert_AnalogToDigital. Note that its input data is a
continuous signal. The conversion time as well as its resolution are passed via
the generic mechanism emphasizing the rather abstract view of this fundamen-
tal mixed-signal functional unit. The model compares directly to the modeling
approach depicted in Fig. 2.7 b) without detailing the v/i characteristic at the
converter’s input terminals U_in_N and U_in_P.

Model Representation 59

60 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

Model Representation 61

3.3.2.5 Digital Block

The depth value is calculated in the digital part from data obtained through
pressure and temperature measurements. It is then represented as electrical
quantities. In the first intermediate step the actual temperature is determined
using the temperature data represented in 6 bit accuracy. This is followed by
the calculation of the actual pressure from the pressure data given in 12 bit
accuracy. The conversion of the specified pressure to a depth value below the
water surface is obtained by Eq. (3.2).

62 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

Model Representation 63

The model outlined in this section implements digital signal transformations
aimed to compensate for the nonlinearities of the sensors. The depth value is
calculated at a guaranteed accuracy of 0.1 m.

The digital_algorithmic architecture related to the entity declaration in
Fig. 3.33 makes use of resource sharing and scheduling features of state-of-
the-art high-level synthesis tools, which results in a relatively small circuit
complexity. The synthesized VHDL code yields one multiplication unit, one
division unit, and some glue logic. The code given in Fig. 3.34, an algorithmic-
level description, is fully synthesizable by the Behavioral Compiler.

This example highlights the features of VHDL as a subset of VHDL-AMS
in denoting high-level, but still synthesizable models for the digital domain.

3.3.3 Simulation Results
The aberation monitor depicted in Fig. 3.36 and denoted as vdc_tester in

Fig. 3.35 takes the environmental pressure data and the depth output of the
digital block for the calculation of both an absolute error and an analog value

64 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

Model Representation 65

corresponding to the digital depth information. The results of the monitoring
are depicted in each third trace as part of the overall simulation results shown
in Fig. 3.36.

The first plot in Fig. 3.36 visualizes the results of system simulation for a
lake dive. Note the temperature profile of the lake (second trace).

In contrast, the second plot in Fig. 3.36 depicts the simulation results for
an ocean dive scenario. The system’s model of the gauge is as before, but the
environment has changed. Thus, the gauge model acts as a virtual prototype to
be exercised in different contexts. The accuracy of the model is visible from
the third trace in each plot. The absolute error (i.e., the difference between the
actual and the measured depth) is in the range of the least significant bit of the
discretized depth value as visible from the third trace in Fig. 3.36 a) and b),
respectively.

66 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

Model Representation 67

Chapter 4

CHARACTERIZATION OF
CIRCUIT PROPERTIES

4.1 Role and Principles of Circuit Property Extraction
Models of functional blocks or of entire integrated circuits may be derived

in different ways, depending on the scope and even on the modeler’s view on
the design object. Independently of the method of model construction, there is
always a need to assign physical values to at least some of the model parame-
ters. The process of determining such values is commonly addressed as char-
acterization. There are two distinct application areas present in the domain of
electronic circuit design: device and circuit characterization. The first applica-
tion aims to parameterize models for active, in general, nonlinear devices such
as diodes and transistors. We will not detail on this application because we
are mainly interested in model engineering of functional blocks and complex
systems. In contrast, circuit characterization addresses the extraction of raw
data from either measurements of real circuits or from simulation of models of
such circuits in terms of different complexity and calculation of circuit prop-
erties from this raw data. In principle, there are three basic methods available
for the determination of circuits properties.

1 Analysis: Some properties may be calculated directly from more or less
simplified mathematical models of functional blocks. A subset of the block
behavior has thus to be denoted by means of analytical equations which
are largely valid in some subset of the entire operation domain of the block
only.

2 Measurement: This is the traditional approach to an extraction of circuit
properties, which are then arranged into data sheets thus yielding a major
part of product documentation. However, a prerequisite to this method is
the presence of a real piece of hardware. This method, therefore, is not fea-
sible during the design phase of a functional block or a system. In addition,

69

70 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

some properties cannot easily be determined from measurements only, such
as the open loop gain of an operational amplifier, for example.

3 Simulation: A description of the functional block to be characterized is
represented in an executable hardware description language such as the
SPICE netlist format or, more appropriate in these days, VHDL-AMS. The
model of the block is then connected to a testbench (i.e., the measurement
setup) for the properties to be determined as demonstrated in Chapter 3.
This augmented model is then subjected to an excitation by input signals
and operating conditions and is executed by a simulation program yielding
the waveforms of the branch quantities within the block (i.e., voltages and
currents) — at least at the input and output ports of the functional block.
Then, the properties sought may be calculated from this raw data. Although
quite general and of practical impact, this method is not always applicable
because of many problems arising especially from solving nonlinear model
equations or numerical integration.

Some definitions will be given in the following for the terms introduced
above in order to highlight the role of circuit characterization within the design
flow of mixed-signal integrated circuits. Without loss of generality we will
consider only the simulation-based characterization in the sequel.

DEFINITION 4.1 A circuit property of a functional block denotes a certain
behavior of the block. In general, the behavior depends on a set of independent
variables.

DEFINITION 4.2 Characterization is the process of determining values of
circuit properties from raw data generated from simulation results of appro-
priate models of the functional block to be analyzed.

A simple example is introduced to clarify the term circuit property. Con-
sider a functional block which implements the Boolean function of inversion
(i.e., an inverter) as depicted in Fig. 2.2. An interesting circuit property of an
inverter is probably its propagation delay. According to a widely accepted def-
inition — for CMOS circuits at least — the delay value is determined from the
time points associated to the 50% values of the voltage at the input and output
ports, respectively. Obviously, we have to run the simulation for the structural
description of the inverter circuit first, and then we need to determine the mid
swing time points from this raw data for both the input and output waveforms.
We subsequently execute a difference operation to finally get the time value of
the circuit property known as propagation delay. But is this delay value inde-
pendent of the operating conditions of the functional block such as its fanout
load or die temperature? Of course not, these independent variables affect the
propagation delay of our inverter as illustrated in Fig. 4.1 for some example

Characterization of Circuit Properties 71

load values. In addition, the resulting waveforms of the inverter acting as a
signal source affect the delay behavior of its sinks, a well-known phenomenon
of digital circuits.

From this simple example we can derive a more general and formal rep-
resentation of circuit properties and characterization plans. Denoting a circuit
property by f, the set of branch quantities of the structural representation of the
functional block by and the set of its port branch quantities by whereas

then a mapping operation F exists such that

Note that the mapping of just onto is a special case as demonstrated
above for the inverter example. In general, at least some internal branch quan-
tities have to be considered for the mapping as given in Eq. (4.1) because of an
internal state of the functional block. Finite states are obvious for some digital
blocks, but the energy present in analog circuits may be viewed as a general-
ized state and has to be considered accordingly for property calculations. We
will detail on this in the next chapter. Denoting the sets of

Circuit parameters: s

Device model parameters: m

72 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

Operating conditions: oc

Statistical parameters:

then we can define the following mapping G for the set of a functional block

Based on Eq. (4.1) and Eq. (4.2) we can now introduce and discuss a new
term: the characterization plan.

DEFINITION 4.3 A characterization plan defines the process of extraction of
circuit properties and the organization of its results into a data sheet or into a
data base.

The complexity of a characterization plan depends on both the class of the
functional block to be characterized and on its domains of operation. For ex-
ample, digital standard cells operate in time domain and need some simple DC
characteristics only. In contrast, analog blocks are to be analyzed in AC, DC,
and time domain, whereas the testbenches for the extraction of properties vary
considerably compared to digital circuits. Characterization plans, especially
for analog and mixed-signal circuits, are highly complex. To allow for a reuse
of plans, there is a need to provide a modular way to specify the following
tasks.

Definition of simulation runs: The sequence of simulation runs and the anal-
ysis domains are to specified, whereas the result of a run is possibly to be
used as a parameter for a subsequent simulation. This situation is quite
common in analyzing operational amplifiers, for example. The value of the
offset voltage needs to be determined from an analysis in DC domain prior
to a transient simulation in order to compensate for its effects.

Definition of conditions: Testbenches, operating conditions, sweep intervals
for the values of some circuit elements, statistical distributions of model
parameters as well as optional runtime values to be passed to the simula-
tion engine — such as accuracy requirements — have to be captured and
denoted accordingly.

Definition of algorithms: Many circuit properties (e.g., settling times of dy-
namic systems) need to be calculated from the raw simulation data by
means of more or less complex algorithms. Functions and procedures,
therefore, are first to be specified in appropriate formal and executable lan-
guages. They are then to be invoked as part of the characterization plan.

Definition of data storage: The extracted values of circuit properties are to
be stored and represented in a user definable way in order to produce stan-
dard or animated data sheets, for instance.

Characterization of Circuit Properties 73

It is obvious from these first considerations that the elaboration of charac-
terization plans for mixed-signal circuits is a highly complex task. The results
obtained from executing characterization plans, however, are central to the de-
sign flow of all integrated circuits. Fig. 4.2 depicts the role of characterization
with respect to major activities which are part of the design flow in integrated
circuit engineering.

Characterization produces a comprehensive description of circuit properties
in relation to both internal and external elements of a functional block. In
addition, it provides a representation of properties as functions of operating
conditions. It is thus a prerequisite to both fundamental tasks in circuit design
(i.e., generation and validation) of candidate solutions to an engineering prob-
lem. Generation of candidate solutions from synthesis methods (e.g., a specific
operational amplifier according to a set of specified characteristics) relies upon
parametric models and element sizing procedures which, in turn may be based
on general optimization strategies. Its result, however, needs a validation by an
intermediate characterization step unless the correctness of the synthesis out-
put is taken for granted because it is supposed to be ”correct by construction”
— sometimes rather risky in engineering reality.

Validation of models for functional blocks at different abstraction and ac-
curacy levels depends completely on the comparison of output waveforms and
circuit properties of the reference device to the model to be analyzed. For
meaningful results this comparison requires that the same testbenches and op-
erating conditions are applied to both — model and reference device — re-
gardless of the way how the data is generated, either by measurement or by
simulation. Testbenches, operating conditions, data generation methods, and
extraction procedures for circuit properties are at best combined into a modular
characterization plan for the assessment of model quality.

Characterization of Circuit Properties 75

The representation of results may either be in textual form, by using view-
ers, or directly as data sheets. In general, all these representation forms are
required in practice for maximum flexibility. Finally, it makes a significant
difference whether the application domain is restricted to some circuit class
such as digital cells. Mixed-signal circuits as considered here are nonlinear
functional blocks operating in DC and in large signal time (i.e., transient) do-
main. The characterization tool set has to consider this peculiarity accordingly.

From these general objectives we now introduce a set of requirements to
be used as a means to assess possible solution methods to the characterization
problem:

R1 Intuitive specification of characterization plans

R2 Transparent representation of control and data flow

R3 Simulator independent characterization kernel

R4 Scalable runtime system.

Most of these requirements are addressed in some way by available tools
and characterization environments. These tools or tool sets may be classified
either into restricted or into general approaches. Simulator add-ons and func-
tionally enhanced viewers of simulation results belong to the first category. In
general, they are by far not fulfilling all the requirements summarized above.
The more interesting approaches belonging to the second class are based on ei-
ther script languages or on procedural simulation as the fundamental method
for performing circuit characterization.

There are plenty of tool suites available which exploit script languages
for characterization purposes. Some of them directly use Unix scripts as in
autochar [SSS97], or they exploit general purpose script languages such as
Perl, or Tcl/Tk just to name a few. These script languages, however, were
not intended and designed to support this specific purpose. Therefore, many
tool sets define their own script language such as in AIM [Ana97], APLAC1

[VHK+91], ASIS [SG94], Nutmeg [Nut97], SCL [DJS95], or SimPilot2

[Ana95]. Especially the script language of SimPilot enhances considerably the
capabilities of the circuit simulator Eldo3 — in context with a comprehensive
library of extraction procedures. This simulation engine was initially devel-
oped by Anacad GmbH and is now part of the Mentor Graphics Corp. tool
suite. As an example for a specific script language, Fig. 4.3 shows a section
taken from a characterization plan coded for SimPilot. It is aimed to analyze
the temperature dependency of an opamp’s slew rate in time domain.

1 APLAC is a trademark of APLAC Solutions Corp.
2 SimPilot is a trademark of Mentor Graphics Corp.
3 Eldo is a trademark of Mentor Graphics Corp.

76 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

Using script languages as outlined above often results in somewhat cryp-
tic characterization plans as visible from Fig. 4.3. In addition, parameterizing
simulation runs and especially their input data (i.e., testbenches and circuit ele-
ments being part of the description of the functional block to be characterized)
may give rise to major problems for average circuit design engineers.

Because of the drawbacks stemming from script languages, a different meth-
od has been proposed: procedural simulation. One of the first commercially
available characterization environments based on this method is known as
SimBoy [NHM94], which combines DSS-Spread-Sheets with the versatility
of the CAE framework of Mentor Graphics Corp. In contrast, a completely
tool and vendor independent approach to procedural simulation is recalled in
the following. An application specific programming language named CLANG
[HGT91], a runtime system for it, as well as a comprehensive library of pro-
cedures for circuit property extraction and for the control of circuit simulator
engines form the charcterization environment as summarized in Fig. 4.4.

The structural or behavioral description of the block to be analyzed is strictly
separated from both the testbench and the control section of the simulation
engine. Thus, block description, testbench, as well as simulation control may
be parameterized or even updated according to results gained from previous
simulation runs.

Due to the simple syntax of CLANG — a synopsis from Pascal and C pro-
gramming languages — and the functionality encapsulated into a comprehen-

Characterization of Circuit Properties 77

sive library of functions and procedures coded in C, the task of composing
characterization plans for complex applications is now much more straight for-
ward to solve. This becomes obvious when comparing the code of the char-
acterization task denoted in SimPilot as given in Fig. 4.3 to the procedural
simulation subset coded in CLANG as outlined in Fig. 4.5.

When coming back to the basic requirements introduced above we now can
assess the figures of merit of the two fundamental methods for capturing and
representing characterization plans. Table 4.1 summarizes these assessments.

78 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

Although procedural simulation provides a clear improvement to specifying
plans in a more intuitive way, it seems not to be sufficient yet. Procedural
simulation is definitely not the ultimative means for plan specification, mainly
because of a purely textual representation of characterization plans. But, due
to its flexibility, it should be exploited adequately. In addition, none of these
two basic methods offers an intrinsic support for an efficient runtime execution
of characterization tasks.

4.3 Visually specified Characterization Plans
The simulation-based characterization of mixed-signal circuits addresses

two layers of knowledge and expertise from a user’s point of view. First,
paradigms for capturing both control and data flow are required. Secondly,
the generation of data by exercising simulation engines and the extraction of
circuit properties are the main purpose of characterization, but the way of how
this is achieved at the implementation level of the tool is not of primary interest
to a user. Therefore, a multi-paradigm approach has to be envisaged:

1 A front end for an appropriate communication with circuit designers acting
as users of the characterization system

2 A back end which translates the user-specified characterization plan into
a sequence of data generation, extraction, and storage tasks in an intuitive
and transparent way.

Thus, a general approach to mixed-signal circuit characterization should
consist of

Visually specified control and data flow with variable granularity

Textually specified operators.

The Visual Characterization Environment ViCE [GH93, GH94, HG95,
Goe01] outlined in the following exploits visual programming techniques for
the specification of characterization plans (i.e., the front end) and the procedu-
ral simulation method for the implementation of the back end. Fig. 4.6 depicts

Characterization of Circuit Properties 79

its user interface, which consists of three basic access modes: visual specifica-
tion of data flow, definition of dialogues, and textual specification of operator
functionality by means of C programming language.

The leftmost window depicts the coarse-grain data flow specification of a
characterization plan. The associated control flow is represented by specific
glyphs, such as the sequence block, and by global variables. The window in
the center of Fig. 4.6 visualizes the parameterization of glyphs by means of
dialog forms as frequently needed for the instantiation of simulation services
as parts of a characterization plan. Finally, the rightmost window shows the
access by the ViCE systems administrator, who implements the glyph func-
tionality by means of programs — in C in this case.

ViCE is based on the Cantata visual language in Khoros [RW91], a spec-
ification and simulation system for digital signal processing applications. A
plan is captured in a straightforward way by a data flow graph-based approach
(leftmost window in Fig. 4.6): visually represented vertices are connected by
data links. However, application domain related functionality and means of

80 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

controlling the characterization task are a prerequisite to this approach. This
requirement is met by providing suited operator elements visible as vertices in
the data flow graph.

The visual representation of basic operator elements of Cantata denoted as
glyphs is depicted in Fig. 4.7. The operators may be classified into the fol-
lowing groups.

Operator vertices:
These elements calculate output values from input data by means of an
associated algorithm. They are the main data manipulation operators within
the system.

Control vertices:
Control structures such as loops and conditionals are represented by control
operators.

Procedure vertices:
These elements contain Cantata subgraphs and are thus dedicated to a hier-
archical modularization of characterization plans.

The representation of a characterization plan is now much more adequate for
circuit designers who are very familiar with visual representations of structural
descriptions of functionality such as circuit schematics or block diagrams. In
fact, the plan looks much like a block diagram of a transmission system rather
than a specification of characterization tasks.

The ViCE system is conceived for a direct support of the following three
fundamental roles when it comes to circuit characterization.

Characterization of Circuit Properties 81

User: Circuit designers usually take the role of a user of characterization ser-
vices. They specify characterization plans and testbenches for the circuits
to be analyzed.

System administrator: CAD engineers find themselves in the role of setting
up a characterization environment, of enhancing functionality upon user
request, and of integrating third party software products into the system.

Vendor: Providers of software products such as simulators, library packages,
or computer algebra suites deliver the basic building blocks of a character-
ization system.

In practice, some of these roles may be assigned somewhat differently. In
small companies, for example, user and system administrator may be the same
person. In contrast, large companies frequently let their in-house CAD groups
act as a vendor of product specific design and analysis software packages to
the own design departments.

For demonstration purposes, Fig. 4.8 depicts the visual plan of the inner
loop for slew rate extraction as in Fig. 4.5. The leftmost vertex generates the
sequence of temperature values taken from a predefined set. Then, the vertex
vCircPar inserts the actual temperature value into the input file of the simu-
lator. Now, vTRAN runs the transient simulation. The resulting output file is
parsed by vTAL, thus extracting the raw transient voltage data waveform to be

82 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

used as an input to vClang. By means of procedures and functions from a pro-
gram library this vertex finally calculates the slew rate value for each element
of the temperature set which, in turn is stored accordingly by vTabPut. Note
that the actual temperature value is forwarded to this operator by the control
vertex denoted in Fig. 4.8 as sequence, which implicitly provides the loop
construct for stepping through the temperature range. Compared to the rep-
resentation given in Fig. 4.5, this characterization plan plainly depicts what is
to be done during characterization. Visually represented plans are, therefore,
best suited for the specification of complex characterization tasks. The visual
language Cantata is more appropriate for this kind of application than other
existing visual languages or systems such as LabView4 or VEE5, for instance.
This is because of its data generation mechanism which is aimed more to pro-
gram execution rather than to event and message processing during real-time
measurements.

Cantata provides a variety of control operators as visually represented ver-
tices. However, some characterization-specific extensions and enhancements
to Cantata had to be considered. Especially global variables as used originally
in Cantata for communication purposes between control vertices had to be re-
placed because they did not follow the data flow principle. Some additional
control operators were introduced such as cond and do, which implement the
if conditional and the while loop constructs without referring to global vari-
ables as in the original version of Cantata.

Table 4.2 summarizes the complete set of control operators available in the
ViCE system. Details on the various enhancements to the ViCE version of
Cantata can be found in [Goe01].

The control flow within a characterization plan is thus embedded into spe-
cific operators resulting in a data flow-based overall computational model of
the plan. The correctness of the underlying data flow graph in terms of safeness
and liveliness is validated by animating the plan (i.e., by interactive execution).

4LabView is a trademark of National Instruments, Inc.
5VEE is a trademark of Agilent Technologies, Inc.

Characterization of Circuit Properties 83

4.4 Architecture of the ViCE System
The foundation of the ViCE system is the client-server architecture. The

characterization plan defined visually by a user acts as a client and requests
different services offered by specific servers of the system. Therefore, servers
are provided for the services of simulation, data extraction, data analysis, data
storage, documentation, and result visualization. Each of these services is em-
bodied by one or more servers. A server is implemented as an operator vertex
to be instantiated by the visual plan entry system.

As an example, consider the operator vertex denoted vTRAN in Fig. 4.8. This
operator provides a simulation service and thus represents one of the simula-
tion servers for transient analysis, which invokes a properly interfaced SPICE3
simulation engine in a completely transparent way to a user. In addition, this
approach supports an easy integration of a variety of external tools and char-
acterization plans coded in different script or programming languages. For
example, the Mathematica package provided by a vendor as well as third party
procedures or complete libraries coded in CLANG and/or in SimPilot may be
introduced to the ViCE system as servers. Once the interfacing, the execution
scripts of the tool, and the visual representation of the operator vertex are de-
fined by the system administrator as outlined in Fig. 4.6, then the new server is
just another vertex in the underlying data flow graph which, in turn represents
the complete characterization plan. Fig. 4.9 depicts an overview of the ViCE
system.

As mentioned in the previous section, the basic concepts of the characteri-
zation system ViCE are visually specified control and data flow as well as tex-
tually specified operators. Taking the coarse granularity of operators and the
message passing paradigm into consideration for the communication between
the operators, it seems quite straight forward then to attempt an automatic par-
allelization of characterization plans. An inherent parallelism is almost always
there when characterizing circuit blocks over operating condition ranges or in-
tervals of element values. This common situation is depicted in Fig. 4.10 for
the parallelization of an intrinsic loop within a visually represented data flow
graph. Here, two operator vertices are merged (i.e., clustered) into one vertex
in order to reduce communication overhead.

Following another objective of the ViCE project (i.e., to exploit as many
available methods and subsystems as possible) results in an integration of the
well-known PVM6 program suite [SJN94], thus yielding both a reliable and
a general runtime system for circuit characterization [Ant99]. Fig. 4.11 high-
lights the phases of parallelization on top of PVM. First, the data flow graph
extracted from the visually specified plan in the ViCE version of Cantata is

6PVM is public domain software initially developed at Oak Ridge National Labs.

7HP-UX is a trademark of Hewlett Packard Corp.
8Linux is public domain software from Linus Torvalds
9Solaris is a trademark of Sun Microsystems, Inc

84 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

mapped to an intermediate, object-oriented graph representation [Bau94]. Sec-
ondly, an optional clustering of the intermediate graph and a generation of C
code takes place. This code is then translated on top of possibly different hard-
ware platforms for an execution (e.g., HP-UX7, Linux8, and Solaris9 work-
stations). Thirdly, scheduling of the executable code is performed by means
of PVM. Servers are being activated upon request during the runtime of the
programs generated from the initial data flow graph. The communication of

Characterization of Circuit Properties 85

the PVM scheduler with the server programs denoted as SP1, SP2, and SP3 is
detailed in Fig. 4.11. The mapping of the graph is summarized in Fig. 4.12 for
the resulting system xpViCE.

86 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

One has to take care in an adequate configuration and runtime control sup-
port when exploiting a parallel computer as the workhorse for simulation-based
circuit and functional block characterization. This is especially true in the
presence of a virtual and heterogenous parallel machine. Configuration and
monitoring utilities for the workstation network used as the parallel machine,
therefore, are part of the experimental, parallel operating characterization sys-
tem xpViCE [BHW99].

The graphical user interface for runtime control is detailed in Fig. 4.13.
Configuration and control services are accessible via the entry console (1),
which is also visible from this figure. Available hosts and restrictions on the
amount of allowed processes on each host may be defined (2) as well as details
on the maximum number (3) of parallel program runs feasible for licensed
products. Finally, by invoking the scheduler, (4) the parallel virtual machine
may be started.

The outlined characterization environment xpViCE has demonstrated to be
flexible and powerful enough for fulfilling the requirements of complex mixed-
signal applications.

Characterization of Circuit Properties 87

74 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

Although data extraction by measurements or by simulation share many re-
quirements of processing and compression of data, there are significant differ-
ences in controlling the generation process of raw data. In case of measure-
ments there is a need control real measurement equipment and to collect their
data within tight time frames resulting in stringent requirements of handling
interrupts efficiently. In contrast, data generation from simulation relies upon
mixed-signal models of basic elements and functional blocks, on algorithms
for event processing and numerical integration, and especially on controlling
the software which executes models by running algorithms for the purpose of
raw data generation: an event-discrete/time-continuous simulator.

4.2 Requirements of Simulation-based
Characterization

Because of its importance, circuit characterization has been addressed by
many authors in the past (e.g., [Cir91, LSJ96, LMN95, MK90, NHM94] and
[Ant98]). There are several CAE tools available for this purpose, either from
academia or as commercial products, but many of them are aimed to produce
the documentation of digital cell libraries only. In the following we will focus
on the assessment of well-known basic methods in analog and mixed-signal
circuit characterization because analyzing purely digital functional blocks re-
quires the execution of just a subset of the characterization tasks needed for
mixed-signal circuits. We then will introduce a set of requirements and —
based on these criteria — discuss some of the available approaches to circuit
characterization in more detail. The main objectives of mixed-signal circuit
characterization, therefore, are

Execution efficiency

Runtime control

Result representation

Application domain.

Execution efficiency is related to how the simulation runs are executed for
a given characterization plan (i.e., whether the simulations have to be run se-
quentially or may be executed in parallel in case of an intrinsic parallelism
within the plan). From the user’s point of view it is essential for the latter
case that the runtime environment provides an automatic scheduling of sim-
ulation and extraction runs without major user interaction. Runtime control,
again from the user’s point of view, should be as convenient as possible. It is
of utmost importance how the control information is captured: table-driven, by
text files, or by means of visual techniques.

Chapter 5

ADVANCED MODELING METHODOLOGY

5.1 Motivation
The engineering process of mixed-signal integrated circuits and systems is

rather complex and requires means to assess and evaluate concepts and prop-
erties of the design object well in advance to a first implementation in addi-
tion to skilled and experienced designers. Simulation is the premier method
for coping with early evaluation and assessment tasks, but its prerequisite is
the availability of appropriate models for the design object to be engineered.
Model engineering, therefore, is a fundamental activity throughout the whole
design process of integrated circuits.

Behavioral models as emphasized in this book are characterized by the map-
ping of input to output signals described completely by mathematical equations
and event processing algorithms as discussed in Chapter 2. In addition, inter-
face signals with a direct physical interpretation are subjected to conservation
laws (i.e., Kirchhoff’s Rules), which are to be met for currents and voltages in
mixed-signal integrated circuits. These characteristics of behavioral high-level
models are highlighted for a generic analog-to-digital converter as depicted in
Fig. 5.1.

The converter takes a voltage value as delivered by a preceding sample-and-
hold block at the input ports and converts it by a successive approximation
method thus producing digital output data, which is the coded representation
of the input voltage value. A behavioral model of this converter is outlined in
the VHDL-AMS code of Fig. 5.2.

This representation meets all the characteristics given above: The input
signal is defined as an across branch quantity derived at port terminals
which, in turn are assigned to the nature Electrical (i.e, voltage), and the out-
put signal is a parameterized array of digital bits. In addition, the mapping

89

90 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

from input voltage to output data is denoted by an algorithm, which consists of
both analytical equations and event processing. So, this seems to be a perfect
behavioral model of an A/D converter. Because the representation of Fig. 5.2
is parameterizable, one may easily define a nicely operating — in simulation,
though — instance of this model for a 24 bit ADC working at 2 GS/sec con-
version rate simply by setting the generic resolution parameter Res to 24 and
by defining the clock signal frequency outside the model accordingly. How-
ever, from practical experience it is well-known to a skilled design engineer
that implementing in reality such a converter is more than hard. What went
wrong?

When starting from a rather abstract view on the functionality of information
processing blocks one should carefully consider the way how behavioral mod-
els are denoted. In our example, the modeler was biased to a ’top-down’ view
resulting in an algorithmic description for synchronously operating architec-
tures (i.e., more to the view of a software programmer than of a mixed-signal
circuit design engineer).

5.2 Classification of Modeling Approaches
Over the past decades plenty of approaches and detailed methods have been

proposed as possible solutions for the complex task of modeling the behav-
ior of analog and later on of mixed-signal circuits in an abstract way. Start-
ing from macro modeling as pioneered by Boyle et al. [BCP74], the actual
model bandwidth as documented in literature is impressive: From transistor
netlists enhanced by analytical equations and coded in VDHL-AMS [Cam98]
to functional, algorithmically denoted and essentially digital models wrapped
into some behavioral shell as in Fig. 5.2, from activation semantics of abstract

Advanced Modeling Methodology 91

functionality in time domain combined with structural information [GW98] to
sophisticated, causal models [Jes01], from a mix of functional, behavioral, and

92 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

architectural representations [EZJ+00] to complex compound DAE and event
processing models [OHLR00].

Taking into consideration the abstraction hierarchy levels as summarized in
Chapter 2 and the expressivity of modern HDL, which support quite different
ways to represent one and the same behavior as discussed in Chapter 3, it
seems that every possible variant of a model may be produced in one way or
the other. Therefore, an attempt to classify available modeling approaches for
both analog and mixed-signal circuits is presented in the following.

Models are structured into three main classes, which are related to their
basic rationale. These classes are denoted as concept, objective, and style,
respectively. The content of each of these classes is summarized in Table 5.1.
The fundamental modeling concepts known as causal and acausal have already
been introduced and discussed in Chapter 2.

Modeling objectives may be structured into three groups: block property
mock-up, nonnumerical evaluation, and signal waveform calculation. Prop-
erty mock-up is most popular when it comes to abstract behavioral modeling
of analog and, to a certain extent, of mixed-signal circuits. The underlying idea
is to identify key properties of a block, such as loop gain, transit frequency,
S/N ratio, slew rate, settling time, linearity, conversion time, etc., and to reflect
these properties directly in the model as it has been done for long years with
macro modeling. Values of identified key properties are first extracted from a
characterization process applied to a low-level description of the block. They
are then represented either as analytical functions (possibly defined in disjoint
operating domains of the block), which are parameterized from a fitting pro-
cess exploiting regression models, or directly as tables in a higher-level HDL
description of the block. Digital signal processing may be added to the model
by instantiating the code of associated algorithms. The following list referring
to methods of implementing this objective is by far not complete [VVGS99,
FVG00, WVD+99, VVV+99, DG98, LDGS97, VDG00, EZJ+00, DP98].

Advanced Modeling Methodology 93

Many commercial vendors of model libraries favor property mock-up be-
cause it yields high quality behavioral models even when compared to their
real counterparts by means of measurements [Ant98] — but only if such em-
pirical models were generated by experts and if the models were to be applied
in a context exactly as specified by the model producer. However, two major
drawbacks are to be mentioned. First, a model reflects only properties and
property interactions anticipated by a human modeler. In other words: Proper-
ties or relations of a property to other ones not explicitly coded into the model
are simply not there. Secondly, only ”if one fully understands the circuit, one is
thus able to replace the complete circuit by a behavioral equivalent” [LDGS97]
model generated in this way. In case that model producer and model user are
disjoint persons, then problems may arise concerning the accuracy and the ap-
plication ranges of such a model.

Nonnumerical evaluation, also known as symbolic analysis, an area pio-
neered by Gielen, Sansen, et al. [GS91, WGS98, DLG+98, GWS94], is the
second basic objective. Nonnumerical evaluation is aimed to an analytic rep-
resentation and symbolic manipulation of equation systems which denote the
behavior of analog circuits featuring a weak nonlinearity. In addition, the cir-
cuits subjected to symbolic analysis are generally operated under small signal
conditions. An application of symbolic analysis to modeling of mixed-signal
circuits and systems is not straight forward.

The third objective is signal waveform calculation. By exploitation of nu-
merical DAE solvers as well as event processing engines, a user of mixed-
signal models may deduce all signal waveforms of interest from their execution
— both internal to a block and at its interface. The accuracy of the resulting
waveforms, however, depends primarily on the degree of detail present in the
description chosen for the block behavior, but not on solvers or engines. This
is usually because no explicit selection from a set of available solvers takes
place prior to a simulation run of models being specified at different detail lev-
els. Abstraction levels as summarized in Chapter 2 have thus to be considered
carefully when denoting the block functionality or behavior. Signal waveform
calculation produces explicitly all data required for determining electrical and
abstract properties as well as their interaction within a block for model repre-
sentations stated on any of the mentioned abstraction levels. The high com-
putational effort required for signal waveform calculation especially for com-
ponent level representations is the main drawback to be noticed. This major
flaw was basically the reason for introducing macro models in the past which,
however, are constructed according to the objective of property mock-up.

Modeling styles may be distinguished by the point of view a modeler takes.
The first style is denoted as mixed-mode algorithmic description. The time-
continuous and the event-discrete partitions of a model, respectively, are sep-
arately coded. They interact in an explicitly defined way resulting in well-

94 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

structured algorithmic representations of mixed-signal behavior as mentioned
in [OHLR00]. The second style is denoted as mixed-level structural descrip-
tion. This style is related to a successive decomposition of design objects into a
structure of interacting modules, which may be represented by models denoted
at different abstraction levels.

The methodology presented in the remainder of this chapter addresses mod-
el generation and representation at functional analytical and at behavioral al-
gorithmic level according to Fig. 2.9, thus covering both the causal and the
acausal modeling concepts. Its objective is signal waveform calculation, and
the advocated model representation style is mixed-level structural description.
A high accuracy of resulting signal waveforms is the main asset of this method-
ology. A considerable computational effort is indispensable for accurate wave-
forms, it cannot simply be abstracted away. This effort, however, may be
shifted from the model execution to the model generation phase as illustrated
in Fig. 5.3 and detailed in the sequel. The interaction of time-continuous and
event-discrete signals within a mixed-signal circuit model is based on the sys-
tems theoretical DEV&DESS conceptual model, which is discussed in the next
section.

Generality is not claimed for this methodology because it does not address
each and every class of circuits in all operation domains. For instance, os-
cillator circuits or small signal modeling in frequency domain are not covered.
However, the advocated methodology efficiently supports model generation for
analog and mixed-signal circuits as found in many relevant engineering appli-
cations. In addition, the modeling process is transparent, scalable, and under
full user control.

5.3 The DEV&DESS Model

Functional descriptions of time continuous (i.e., analog circuits) may be de-
rived using DESS as a basis. Event or time discrete (i.e., digital systems behav-
ior) may exploit DEVS or DTSS, respectively, as a theoretical foundation as
discused in Chapter 1. Heterogenous behavior, a characteristic of mixed-signal
circuits, needs an appropriate theoretical model for denoting the requirements
of both analog and digital signal processing. Consequently, a combined model
has been proposed for that purpose in systems theory [Pra91].

DEV&DESS, the combined differential equation and discrete event speci-
fied dynamic system model, is defined by

Advanced Modeling Methodology 95

Vector of input signals
Vector of output signals
Vector of state variables
Transition function for external and state events
Transition function for internal events
Output function
Time advance function
Rate of change function

96 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

This intrinsically causal model class defines the cooperation of DEVS and
DESS submodels, Fig. 5.4 illustrates the underlying formalism. The input as
well as the output consist of both event and piecewise continuous segments.
The DESS rate of change and the output functions, respectively, specify the
continuous behavior of the composed model as long as no events originating
from DEVS interfere.

The DEVS part in Fig. 5.4 is affected by events produced by its DESS com-
panion in addition to input signal changes. This kind of evens denoted as state
event is generated when some DESS internal continuous state variable crosses
predefined thresholds. Conditions specified on such quantities then become
true, thus causing an event which is forwarded to DEVS for further processing.
A short and informal description of the DEV&DESS operation reads as fol-
lows, formal and comprehensive representations are given in [Pra91, ZPK00].

In case that an internal event occurs first within a time interval, then the
internal transition function of DEVS executes and establishes a new state s
which is possibly reached ta(s) time units later. The time advance function
ta thus reflects a delay operation. The associated output function of DEVS is
invoked for the calculation of the associated output event. At a certain point
within a time interval an external or a state event may occur. Now, the external
transition function is executed for establishing the next state, again possibly
after a certain time delay. Continuous state waveforms are computed by DESS
always from its actual input and state values at the beginning of each time inter-
val plus the integral of the rate of change function along the time interval until
the time point of an event. The continuous output waveforms are calculated
accordingly.

Advanced Modeling Methodology 97

5.4 Basic Methodology and Model Architecture

The DEV&DESS model is an appropriate theoretical foundation for func-
tional and behavioral models as detailed in the following because it considers
both event processing and the time derivatives of state variables within one en-
tity at the same time, thus fulfilling the requirements of mixed-signal circuit
modeling. However, the model definition of Eq. (5.1) does not denote explic-
itly algorithms for the calculation of the detailed output waveforms of the block
in time domain resulting from a close interaction of events and time-continous
signals. Again, the modeler is urged to return to structural and behavioral de-
tails of the block functionality of the circuit to be modeled, has to ’somehow’
construct the model, and then map it to an executable model description which
shows in its coded version more or less clearly the basic components of the
DEV&DESS architecture. A closer look on how the output waveforms are de-
termined from simulating executable model descriptions in time domain helps
to establish a feasible and at the same time transparent model generation ap-
proach. For the sake of clarity we will consider only blocks featuring single
inputs and outputs in the sequel.

The time-dependent output waveform of a dynamic system is generally de-
termined by an integration operation which, in turn is implemented as a nu-
merical algorithm. Thus, the values of the output variable are calculated at
discrete time points only, which result directly from the time steps of the inte-
gration process. These time steps may or may not be equidistant, it depends on
details of the time step calculation methods as implemented in the integration
algorithm. A generic result from such an integration algorithm is depicted in
Fig. 5.5 for the output signal A first consequence from this calculation at dis-
crete points in time is that each new value is determined by incrementing the
previous one by a certain amount. As a second consequence, the output values
at time points in between integration time steps are not known. They only may
be estimated, for example, by linear interpolation as depicted in Fig. 5.5.

When changing our way of looking at these results, then we may state that
an event-discrete processing takes place: At points in time not known a priori
— they result from the integration algorithm — events are produced internally
to the model, which are processed in order to calculate the output value as
visualized in Fig. 5.5. Up to now, we have considered internal events only.

Next, let us consider the response of a dynamic system to the change of a
input value (i.e., its reaction to an external change of variable values). Fig. 5.6
shows a typical response of such a system to an input step function. First, the
output variable reacts delayed to the change of the input value. Secondly, the
rate of change of the output (i.e., its time derivative) is bounded resulting in a
slewing characteristic as visible from Fig. 5.6. Thirdly, the value of the rate of
change function is not a constant. This is especially true for nonlinear dynamic

98 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

systems, where the slewrate is a strongly nonlinear function in terms of input
variables.

Advanced Modeling Methodology 99

Value changes of a time-continuous input function do not immediately es-
tablish the systems response. They are evaluated at the time points of internal
events and affect the output possibly at a later point in time and for a much
longer time interval than the next integration time step takes. So, changes
taking place to the model externally are handled by internal events under con-
sideration of the internal state the system is in (i.e., the past of the system is
also taken into account for the calculation of the resulting output waveform).
This situation is summarized in Fig. 5.7. Starting at an internal event (i.e., an
integration time point) an external input is first sampled and then the new val-
ues for state and output variables are scheduled for calculation by means of
additional internal events.

What happens in case of an external event (i.e., a value change of a digital
input signal) to the model of a mixed-signal circuit? Consider the generic
model code for a 1 bit D/A converter given in Fig. 5.8 to highlight its effect.
Remember that in VHDL-AMS all statements placed in the executable section
of an architecture operate concurrently.

An event set to S (i.e., the digital input to the converter) forces ConvDly
time units to a recalculation of and a value assignment to the time continuous-
branch quantities denoted as Vout and Iout after said event. Consequently, an
event is scheduled accordingly by adding it to the event queue of the simulator,
which contains all known future events. Thus, an interrupt of the ongoing
calculation of time-continuous waveforms takes place at due time caused by
the break statement in Fig. 5.8. This situation is depicted in Fig. 5.9, which
may be viewed as another representation of the simulation cycle in mixed-
signal hardware description languages.

The architecture of the functional block model detailed in the following is
a refinement of the formal DEV&DESS model according to the observable
behavior of mixed-signal circuits as summarized above. It is based on work
published in [RH98, Ros01].

100 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

Advanced Modeling Methodology 101

Input, output and state variables are grouped into arrays and may be defined
as free or branch quantities, respectively. Their sets are denoted by U, Y, and X,
respectively. Without loss of generality we will restrict the subsequent discus-
sion to As we will see later on, the dimension of in Eq. (5.2) is
independent of the number of state variables (i.e., branch quantities of energy
storage elements present in the structural description of the circuit).

The state transition function denotes the changes of the array values in
in case of events and is composed from analytical functions as outlined in

Eq. (5.4). Note that there is no distinction between internal and external events
as in Eq. (5.1).

The new values to be assigned to the elements of are determined from the
functions in Eq. (5.4) such that

They determine at time point from the actual input from past values
of states and output the new value of the state variable are intrinsic
functions of BlockModel in Eq. (5.2). The are denoted as parameter functions
of the model because their actual relationships have to be established from a
calibration process. Model calibration is detailed in the next section.

The output function determines the output value from the actual state of
the system.

By adding an appropriate increment recursively to the past value of the
new value at time point is established from

Vector of input variables
Vector of output variables
State variables
Transition function for events
Output function
Time advance function
Rate of change function

102 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

whereas,

The increment of the output value at each timestep may be derived from
a linear Taylor series expansion as given in Eq. (5.8). The calculation starts at
time point 0 and, as an initial condition, exploits the DC operating point of the
block as denoted in Eq. (5.9). This is a standard method in transient analysis
of nonlinear circuits. The rate of change function in Eq. (5.2) may be thus
be viewed as time derivative of the output

and may be used to rewrite Eq. (5.7) as

The only problem with the algorithm given in Eqs. (5.7) to (5.11) is that it is
not executable because a direct calculation of the increment of at time point
in Eq. (5.8) requires the derivative value which, in turn needs the value of at

Therefore, an indirect method is proposed in the following, which is based
on the analysis of the block behavior at its inputs and outputs. First, the time
derivative of using Eq. (5.10) may formally be stated as

Thus, the increment of in Eq. (5.8) is rewritten using Eq. (5.12) as

The derivative of in Eq. (5.13) may easily be established from an input-
output analysis of the system behavior resulting in the slewrate function of the
block. However, the reaction of the dynamic system on changes at its inputs
needs a more detailed discussion. First, as already shown in Fig. 5.6, a change
of an input value is principally effective for a longer time period than the next
integration timestep takes. Fig. 5.10 depicts a typical situation when applying
an incremental increase of the input value (i.e., a step function) to a dynamic
system.

The final steady state of the output can be calculated from the DC charac-
teristic of the system, but it takes some time to reach this value. Note that in
this case the primary input value does not change during the calculation of the

Advanced Modeling Methodology 103

output values by means of numerical integration. Therefore, an introduction of
an effective input value increment for each timestep is required in order to
cope with this situation.

Secondly, as visible from Fig. 5.10, the system unveils a delayed reaction
to the change of the primary input value. This is considered by introducing a
delay function, which, in general, depends nonlinearly on the input signal of
the block. Eq. (5.11) is now rewritten as

whereas the rate of change function is finally defined as

The time advance function ta of Eq. (5.2) consists, as already mentioned, of
the combined ordered set of internal and external events and of a scheduling
mechanism for introducing future events to this set according to actual values
of the delay function. In contrast to the well-known processing of events in

104 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

logic simulation, skipping directly to the time point of the next known event
is not feasible here because events caused by the integration algorithm or state
events have to be processed accordingly. This situation is depicted in Fig. 5.11.
The calculation of the output value should be done at time point (i.e.,
TD time units after the event caused by the input change of This reflects the
delayed reaction of the system. But the integration algorithm produces some
events in the time interval which cannot be simply skipped as in
logic simulation.

There is a good chance that several events, which are adjacent to each other
in time domain, have to be processed. First, this is because events at the input
ports of a block affect the output waveforms for a considerably longer time than
the next integration step takes, and secondly, the reaction time of the system
depends primarily on the increment of the input values. Every event affects the
resulting output behavior of the block in some way and should be considered
appropriately. This situation is highlighted in Fig. 5.12.

At time point there may be an external event at the input of the block.
Depending on the amount of change of the input value, the delay of the system
reaction is considered by setting a future event so that the output value is to
be updated at in this case. In between these two events an integration
step may occur resulting in a new event at As a result, the inputs are
sampled at this time point. No change of input values is detected at so
the calculation of the new output value shall be done only 2.5 time units later.
At the output value calculation takes place — which, in general, is not yet

Advanced Modeling Methodology 105

completed in one timestep only — as highlighted in Fig. 5.10. At the
effects of the two pending events have to be combined into one whole event. By
comparing the actual value of the output to the steady state value to be reached,
one can eventually assess the progress in completing the calculation for the
event’s effect. The actual implementation of the block model methodology
exploits a maximum operation in order to determine the persistence of former
events.

An informal description of the dynamic behavior of the outlined block mod-
el reads as follows:

At point in time the state of the block model is at input levels are at
and output levels are at The next external event is set to time point

by means of the time function Until then holds for the
elapsed time i.e., the model is in the overall state

At point in time following actions are to be carried out:

1 Input vector is updated.

2 The new assignment of the state variables is calculated
by the transition function using the actual input signal and the previous
state value.

3 The rate of change function calculates Thus, the slew
rate of the output signal is known.

4 The time advance function adds an external event to the updated event
list using the delay time (as calculated in Step 2 by) at which point in
time the updated value of and the state variables are activated.

106 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

5 The output signals are set to

The transition function in Step 2 calculates at least the envisaged output
value using DC analysis, the time displacement for the setting of events, and
the slewrate of the output signal.

The case study to follow in this chapter shows how a specific functional
block model is built and how the output signal waveform is calculated. Addi-
tional parameter functions may be added to scale the block model to different
operating conditions such as environment temperature [Ham95].

The block model as detailed up to now is aimed at calculating the contin-
uous time domain output waveforms for functional analytical level models.
Such an instance of the BlockModel of Eq. (5.2) is denoted as FctBlockModel.
In VHDL-AMS terminology this means that the port quantity values are
determined by the FctBlockModel, but not the branch quantities as required at
a port terminal to enforce conservation laws during behavioral model sim-
ulation of the block. At port terminals both the across and the through
quantities have to be modeled such that an instatiation of a behavioral block
model fits correctly — in terms of accuracy — to some extent into a struc-
tural component level description of a hierarchically specified module. In other
words: The current-voltage characteristics of the block both at its input and at
its output pins have to be provided within given accuracy ranges as a prerequi-
site to a correct mixed-level simulation of the module. Such a model is denoted
as BehBlockModel.

The construction of a behavioral model can be viewed as a formal refine-
ment or, by using the notation introduced in Chapter 2, as an implementation
of a functional model. Consequently, a behavioral model at the algorithmic
abstraction level is derived by an appropriate instantiation of a model speci-
fied previously on the analytical abstraction level. Signals at the connectors
of the block have thus to be refined and their relations according to conserva-
tion laws require specification also, whereas the intrinsic functionality of the
block model is still derived from the functional model. The generic architec-
ture of a behavioral model resulting from this implementation step is depicted
in Fig. 5.13.

The v/i characteristic at the input pins of the behavioral model is represented
by a new parameter function denoted Rin, which results in a value for RI. The
actual input voltage is forwarded as the input to the functional block model.
The Thevenin equivalent circuit depicted in Fig. 5.13 provides the electrical
output behavior of the model. The output signal denoted as of the internal
functional block is assigned to the voltage source VO and an additional pa-
rameter function denoted Rout results in values for RO in order to model the
v/i-characteristic at output pins. The functional model of the block is left un-
changed, it is simply instantiated as the central part of the behavioral model.

Advanced Modeling Methodology 107

The parameter functions Rin and Rout are predominantly nonlinear. In ad-
dition, their results may depend on context properties of a behavioral model
instantiation such as output load conditions. This is detailed in Chapter 6 for
an opamp circuit example.

The sets of parameter functions needed for the representation of mixed-
signal circuits as functional or behavioral block models, respectively, accord-
ing to the proposed methodology are now complete. They are summarized
in Table 5.2. The elements of in Eq. (5.2) (i.e., the states of these models)
contain the values of the parameter functions asgiven in Eq. (5.5) or values
calculated from these functions in each time step during model execution such
as the effective input value as outlined in Eq. (5.14). The number of states
within a BehBlockModel or FctBlockModel, respectively, is thus a constant
(i.e., it does not depend on the number of real state variables as in Eq. (5.1)).

Fig. 5.14 summarizes the process of generating models according to the pro-
posed methodology. Starting from a representation of the block to be modeled
at a lower abstraction level (i.e., component or procedural level as depicted
in Fig. 2.8) and a characterization plan, the parameter function values are ex-

108 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

tracted from an overall rather complex characterization run, thus yielding an
abstraction from lower to higher levels. The parameter function values deter-
mined in this way are available in a tabular form from this simulation-based
characterization. The table representation is, however, not an efficient data
structure for the modeling tasks to be accomplished in the next step. There-
fore, an analytic representation of this raw data is derived next, which results
in a compact and portable data base: A piecewise defined set of analytic rela-
tionships to be used as the parameter functions summarized in Table 5.2.

Additional block properties, such as its operating conditions dependent be-
havior, may easily be captured by means of introducing additional parameter
functions to the fundamental set given in Table 5.2.

An intermediate representation of a functional or a behavioral model, re-
spectively, may automatically be converted into an executable model descrip-
tion as detailed in Fig. 5.14. Upon user request the available code generators
produce executable codes in either one of the description languages from the
primary data base of a block model: Eldo-FAS, Mathematica, Saber-MAST,
and VHDL-AMS. This flexibility is a unique property of the outlined approach
to model generation.

5.5 Model Calibration
After completion of the simulation and extraction steps defined in the char-

acterization plan as discussed in Chapter 4 all data required for the calibration
of the functional block model according to Eq. (5.2) and for a possible refine-
ment into a behavioral model as shown in Fig. 5.13 is available. At this point
the parameter functions of the model are represented, as depicted in Fig. 5.14,
in tabular form. Tables need, however, a considerably large amount of storage
space. In addition, looking-up of data from and performing interpolation steps
based on table entries as needed to be done frequently at run time of the sim-
ulation take much too long because large tables cannot be stored efficiently as
part of the executable code of a model. Therefore, the model execution effi-
ciency can be increased considerably by introducing mathematical models of
the tabular representations of parameter functions.

Thus, the basic task consists of describing a set of ordered data by means of a
mathematical model. Well-known fundamental approaches to solve this prob-
lem are interpolation, response surface methods [BD87, KC87, Mon91], and
last but not least, regression analysis. For reasons detailed elsewhere [Ros01]
none of these basic approaches is appropriate for a direct application to the
task of model calibration. The approach presented in the following may be
classified as being part of general regression analysis, but there are several sig-
nificant additional features to be mentioned. First, there is a comprehensive set
of linear and nonlinear regression models available. Secondly, distance metrics
and error norms for the quantification of accuracy may be selected from a va-

Advanced Modeling Methodology 109

riety of distances and norms, and thirdly, the calibration process automatically
subdivides value ranges into an ordered set of segments (i.e., intervals) and
selects regression models such that predefined error bounds are not exceeded
during model calibration.

110 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

A functional relation between an independent variable denoted as in the
following and the dependent variable denoted as by means of a generally
unknown mapping function is denoted as

The functional relation in Eq. (5.18) is to be determined using regression
analysis by applying a so-called method according to the definition given in
the following.

DEFINITION 5.1 Each segment is mapped by means of a regression model
function to fit the dependent data set gained from characterization for the
segment at hand

The range of the independent variable is subdivided into segments such
that

A Method consists of two sets — a set of segments
and a set of regression functions

Following properties are provided by methods:
Completeness: Let be the domain of the independent variable to be

modeled. Then:
Unambiguousness: For each pair of segments with it follows:

For two subsequent segments and
it follows: This property is important

to ensure the convergence of the simulation runs.
Preciseness: For each input value each corresponding output value

and a maximal error of it follows that: Different norms stan-
dards and [Box78] and distances (e.g., absolute and Euclidean dis-
tance) [JRS91] may be selected for the computation of

The results of the characterization of a block usually yields a tabular rep-
resentation of results as whereas denotes the independent variable
(i.e., the input signal) and denotes the dependent variable (i.e., the output
signal) produced by the block to be modeled in the notation of the BlockModel.
The fitting of the dependent data to regression models is accomplished, as out-
lined in (e.g. [Rat83]), by a methods library, which combines both standard
and user defined regression models, distance and error norm metrics, as well as

Advanced Modeling Methodology 111

algorithms for an automatic accuracy-driven segmentation into a set of meth-
ods. The methods library is implemented mainly on top of the Mathematica
tool set [Ham95, Ros94a].

Fig. 5.15 visualizes the effects of model calibration by means of exercising
the methods library. The tabular steady-state relation of the magnitudes
of input and output signals, respectively, produced by DC analysis of a func-
tional block (i.e., the parameter function DCtf of the block model) is depicted
as a graph in Fig. 5.15a). Taking as input data, the methods library
produces a method M for DCtf, which features a segmentation of into five in-
tervals, whereas a different regression model is parameterized in each segment
in order to meet user defined accuracy requirements on the fitting results for

Fig. 5.15b) depicts the effects of this approach to calibrating DCtf, which is
produced by invoking

for a maximum fitting error of 3%. The approximation is performed accord-
ing to user specified distance and norm metrics and limits the degree of poly-
nomials to be used as regression models to 8 as detailed above. The content of
the large table of raw data is thus compressed into a set of segments
for and into a set of parameterized regression models for which can be
evaluated much more efficiently at run time of the model compared to a table
look-up from

DCtf = BuildMethod [DCtfTable, DistanceMetric -> Euclid,
Smooth -> Yes, Norm -> Infinity,
MaxDegree -> 8, MaxError -> 3]

Compressing raw tabular data into methods as proposed rises questions
about the resulting accuracy of the calibration process. Let us return for con-
venience reasons to continuous time representations of model behavior for the

112 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

discussion of these issues. By denoting the reference output waveform
of the block in and the waveform produced by the functional or
by the behavioral block model in the same time interval, we define as the
distance metric from to as

Here, we denote different distances by and different error norms by
The latter establish how differences (i.e., distances of and are

accumulated into the error, which, in turn acts as a metric for the accuracy of
the block model. Following norms are available as part of the methods libray:

1 norm. Differences are accumulated in according to

2 norm. This norm is the basis for many least squares fitting algorithms.

1 norm. The maximum distance in vertical direction is established from

and is exploited by many MinMax algorithms. However, when specifying
the maximum procentual error of the calibration process, a modification of the
norm definition is required such that

holds. The selection of appropriate norms (i.e., assigning to the appropri-
ate value from (1,2,) is essential to the quality of model calibration. This
well-known requirement is highlighted in Fig. 5.16. The effects of errors stem-
ming from and norms, respectively, are obvious from this figure.

The consideration of the vertical distance

as used before is, in general, not sufficient to decide whether a regression
model is suited to fit a reference waveform within a given interval [YA91].

Advanced Modeling Methodology 113

A better approach is based on the introduction of Euclidean distances de-
fined by

Its geometrical interpretation is depicted in Fig. 5.17. The minimum dis-

114 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

tance from each point of the reference to the model waveform is the radius
of a circle around the point, which is intersected by the model curve in ex-
actly one point. When combining the Euclidean distance with the error norms
summarized above, one yields

The set of distance metrics available in the methods libray is acccomplished
by introducing the horizontal distance by means of

whereas denotes, as for the Euclidean distance, a scaling factor. For the
distance metrics given in Eq. (5.21) we thus exploit for the Eu-
clidean, horizontal, and vertical distances, respectively, and for
the and norms, as well as the norm variant as defined in Eq. (5.25),
respectively.

All the distance metrics and error norms discussed previously are imple-
mented as part of this methods library. They thus support a comprehensive
approach to model calibration by fitting the parameter functions of functional
and behavioral block models to characterization data. The layered structure of
the methods library is outlined in Fig. 5.18. The library is implemented as a set
of Mathematica packages, which exploit both proprietary procedures written
in C and commercially available numerical packages such as the NAG1 library
in proper sequence.

The main objective of generating efficiently executable models is to approx-
imate parameter functions by as large segments as possibile, which meet given
error bounds by using linear regression models only. A segmentation process
for linear regression is highlighted by the algorithm of Fig. 5.19.

In addition to linear regression models, polynomials of variable order and
exponential functions such as the Lampertz-Gomez model are available in the
methods library to be used for nonlinear regression modeling. A user-defined
extension of the set of regression models is also supported. Details on this
library and its implementation may be found in [Ros94b, Ham95, Ros01].

The proposed calibration approach allows to easily generate differently ac-
curate models from the same raw data by just exercising the methods library
for different error bound specifications. As a result, the generated representa-
tions of the parameter functions become more or less complex depending on

1 Numerical Algorithms Group, Inc.

Advanced Modeling Methodology 115

116 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

the preselected accuracy levels. A trade-off between accuracy and execution
speed of the block models is thus possible — completely under user control,
within a few minutes, and without the need to rerun circuit characterization.

5.6 Case Study: A Linear Dynamic System
In the following, let us consider a simple example in order to highlight the

roles of functional and behavioral models and to outline the detailed model-
ing approach. A linear dynamic system of second order is introduced as an
example in Fig. 5.20. Its functionality is explicitly specified by differential
equations. We thus can denote its functional representation in VHDL-AMS by
directly exploiting the DESS class model of Chapter 1 as outlined in Fig. 5.21.
The values of the coefficients A, B, and C may be assigned to constants.

The causal model of Fig. 5.21 can be exploited in a straightforward manner
for functional level simulation of the block LinDynS after assigning values to
A, B, and C, respectively. When aiming at behavioral simulation, we first have
to select a physical domain for the block to operate in. Secondly, we need

Advanced Modeling Methodology 117

to redefine the entity declaration in order to accommodate the new quality of
input and output signals (i.e., to arrange for the consideration of conservation
laws in the chosen physical domain). According to the generic architecture of
behavioral models shown in Fig. 5.13 the next steps consist of arranging for
the calculation of branch quantities at the input and output connectors of the
behavioral model and of instantiating the functional model.

A structural implementation in the electrical domain of the functionality de-
noted in Fig. 5.20 is depicted in Fig. 5.22. From the component values and the
load condition of the circuit we have to establish how the additional informa-
tion for the behavioral model has to be provided. The resulting model code is
summarized in Fig. 5.23.

In case that a DAE representation of the functionality of the block available
already exists, as for the DESS model of the example system, then there is no
need at all to apply the proposed methodology for the generation of functional
block descriptions. The common situation in practice, however, is given by
the fact that one has some structural description of a block available either at
component or at procedural level and is faced with the requirement to some-
how provide efficient and, at the same time, accurate functional or behavioral
algorithmic level models.

So, let us exercise the proposed model generation process for the linear dy-
namic system at hand. Starting from its structural representation in the electri-
cal domain as depicted in Fig. 5.22, a functional block model is to be generated
and then to be represented as a new architecture denoted asFctBlockModel for
the entity LinDynS of Fig. 5.21. This model may then be instantiated within
the behavioral model of Fig. 5.23 by just replacing the DESS architecture of
LinDynS. This reads as

118 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

According to Table 5.2 we need the parameter functions DCtf, TDly, and
SlewRate calibrated to the characterization results gained from component
level simulation for the generation of a functional model. These simulation
results are to be viewed as the reference for the subsequent assessment of mod-
eling quality.

At this point, it is highly recommended to express one’s expectations on the
outcome of the calibration process. From inspecting the circuit we thus expect
an identity, a constant, and a linear function for DCtf, TDly, and SlewRate,
respectively. A characterization plan defines the analysis process to be per-
formed: First, a sweep in DC domain of the input signal magnitude within
given bounds and, secondly, a sequence of simulation runs in time domain us-
ing a parameterized step function as the input signal to the circuit. Transfer
curve values, slew rate, and propagation delay values are calculated from these
simulation results, which are then arranged into tabular form. The outlined
model calibration process takes this raw data and produces — as detailed in
the previous section — the methods for an approximation of the parameter
functions according to a user specified error bound of 1% in this case. These
calibration results are depicted in Fig. 5.24, 5.25, and 5.26, respectively.

The graphical representations of DCtf and SlewRate as depicted in
Fig. 5.24 and 5.25, respectively, are very close to our previously mentioned
expectations. The calibration results for TDly in Fig. 5.26, however, seem to

Advanced Modeling Methodology 119

2The input signal was defined oppositely to usual definitions in this case thus resulting in the depicted
relationship.

120 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

be strange. Instead of a constant delay for the complete range of input signals
we yield a constant value only for input signals exceeding a minimum mag-
nitude. When recalling how the propagation delay is calculated (i.e., from a
difference operation at points in time for input and output signals featuring the
same value of magnitude such as 50% of the swing), it becomes clear that the
problem stems from a loss of precision while performing numerical subtrac-
tion operations on numbers, which are both close to zero and are represented
by the same mantissa length. Thus, we should correct these calibration results
in our model representation accordingly. At this point it should have become
clear, what the term model engineering as used throughout this book really
means. It is always good advice to any user of computer-aided design tools to
rely more on her or his own engineering skills and problem knowledge than on
automatically produced results.

Transparent methods for generating behavioral or functional models and
a support of sensible user interactions are obvious prerequisites for self-
dependent design engineers.

Fig. 5.27 details the automatically produced functional analytical level mod-
el and the manual corrections of the parameter function TDly. The architecture
of the model consists of piecewise definitions of parameter functions based
on a model calibration by means of the methods library, the calculation of the
output signal from the rate of chance function (i.e., the time derivative), and
the insertion of events by break statements. In addition, the range of input

Advanced Modeling Methodology 121

values, in which the model has been calibrated, is considered in the model
code. This is a good practice because a model generally does not predict the
block behavior reliably in another application context than that being addressed
during calibration. Finally, Fig. 5.28 depicts some results of a simulation run
gained from executing this functional block model. The overall maximum
error compared to the reference result produced by circuit level simulation is
less than 3%.

The parameter functions Rin and Rout, respectively, as required for the
behavioral model of Fig. 5.23 are strongly related to both the electrical imple-
mentation of the linear system as shown in Fig. 5.20 and to the context the
block operates in as denoted in Eq. (2.2). In addition, their results RI and
RO, respectively, are nonstatic (i.e., time dependent), as can easily be derived
from an inspection of the circuit in Fig. 5.22. These circuit-specific and time-
dependent parameter functions may be expressed [AB95], but a detailed anal-
ysis of what is to be done for their specification and execution results in almost
the same work a SPICE-like simulator would accomplish anyway based on a
structural component level description as its input. A modeler should, there-
fore, stick to the component abstraction level for efficiency reasons and should
not attempt to produce an artificial high-level behavioral model when dealing
with such circuits.

This situation changes completely when aiming at an implementation of
the linear dynamic system example by means of active circuits — either by
simply inserting impedance converters into the signal flow of Fig. 5.22 or by
exploiting some active filter structure. Now, the input and the output of the
resulting architecture are almost decoupled from each other, thus opening the
door for a straight forward application of the generic high-level behavioral
model depicted in Fig. 5.13.

Selections of abstraction levels and of modeling styles are obviously not
independent from architectural details of the circuit to be modeled. This fun-
damental characteristic has far-reaching consequences for model generation as
demonstrated in Chapter 6.

122 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

Advanced Modeling Methodology 123

Chapter 6

APPLICATION EXAMPLES

Modeling the behavior of mixed-signal circuits in time domain may or may
not be a complex problem — it depends on accuracy and efficiency require-
ments and, to a high degree, on the the view a modeler prefers. Various trade-
offs concerning model accuracy and, last but not least, the reuse of third party
IP and standard products have to be thoroughly considered, when introducing
high-level models into the design flow of integrated circuits.

6.1 Overview

This chapter is dedicated to a demonstration of the proposed methodology
to show that it is suited for real world applications. A direct generation of
behavioral algorithmic level models and their exploitation within mixed-level
structural descriptions are emphasized. However, a sensible trade-off has to be
established between circuit sizes, length of model descriptions, proof of ob-
jective fulfillment, and available text space for its documentation. Two quite
different examples were taken from the set of circuits modeled by the proposed
model generation approach: a bipolar active filter (i.e., an analog functional
block) and a CMOS A/D converter (i.e., a mixed-signal circuit). These appli-
cation examples differ in terms of application areas, circuit sizes, and semi-
conductor fabrication technologies. However, they have many properties in
common. First, both circuits operate at large input signal conditions in time
domain unveiling a nonlinear behavior. Secondly, they are both constructed
from an interconnection of standard components being available as IP prod-
ucts. Thirdly, each of the resulting models is represented by a mixed-level
structural description of the circuit. This model consists of instantiations of
the behavioral algorithmic models level in addition to the representations of IP
blocks, respectively, and of primitives denoted at component level.

125

126 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

Section 6.2 emphasizes characterization and calibration of parameter func-
tions to be used within a behavioral model at algorithmic level. It is mainly
aimed to a demonstration of the achievable accuracy and efficiency of the pro-
posed methodology with analog waveform representation in mind. In contrast,
Section 6.3 addresses the modeling of mixed-signal circuits. The complete
model of a 6 bit A/D converter is developed step by step and, although lengthy,
documented such that it may easily be executed by means of a VHDL-AMS
simulator. Some advantages of this detailed model compared to a generic rep-
resentation of the converter are highlighted. Finally, Section 6.4 is dedicated
to some conclusions and to remaining open research areas.

6.2 Active Filter Circuit in Bipolar Technology

The first application example is a biquad filter taken from [CY94] and de-
picted in Fig. 6.1. The schematic of this block consists of several resistors,
capacitors, and four operational amplifiers — all of the same type. A genera-
tion of a behavioral model for the entire filter block according to the outlined
methodology is possible, but not feasible in this case for the following reasons.
First, the characterization of the entire, somewhat complex block at component
level consumes a considerable computation time and requires a lot of storage
space for its results. The second and most important reason for not trying to
generate a model for the whole block is directly related to reuse issues. A
model of this specific filter is not likely to be used in as many system design
applications as the behavioral model of an opamp (i.e., a basic building block
of many different analog and mixed-signal circuits), which is instantiated four
times in this filter circuit only.

With model engineering in mind, it is obviously much more appropriate for
reuse purposes to generate a behavioral algorithmic level opamp model first
and then to instantiate it in a mixed-level structural description of the filter ac-
cording to the schematic of Fig. 6.1. The operational amplifier to be used in
this filter circuit is a standard component fabricated in a bipolar technology
[Ray90]. The vendor of this product denoted as MOPA1 provides two struc-
tural models represented in SPICE code as part of its product documentation:
a circuit and a macro level model. These are component and procedural level
models respectively according to the terminology introduced in Chapter 2. The
schematic of the opamp derived from the netlist of the component level model
is depicted in Fig. 6.2.

The component level model is taken as reference for the calibration of the
behavioral model, which as to be done in both DC and time domain. The
characterization data, which forms the basis for the calibration by the methods
library discussed in Chapter 5, has to be produced with different testbenches
for the circuit under test (CUT). This is quite a common situation in analog

Application Examples 127

128 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

circuit design. Table 6.1 depicts some testbenches required for an extraction of
key properties in DC, time, and frequency domain, respectively.

As a consequence, the circuit description (i.e., the netlist) first has to be con-
nected to different testbenches, which are then sequentially compiled together
with definitions of signal ranges and the control of the circuit simulator into
a characterization plan as already discussed in Chapter 4. A manual setup of
testbenches is too tedious and error prone. This task is best supported by a
testbench adapter tool. The user interface of such a tool, which is part of the
ViCE characterization environment, is highlighted in Fig. 6.3 for the setup of
the opamp. Details of this tool may be found elsewhere [Goe01].

Next, the characterization plan has to be specified in order to extract all the
raw data from simulation, which is needed to calibrate at least the parameter
functions DCtf, SlewRate, and TDly, respectively, according to the modeling
methodology presented in Chapter 5. The plan is rather complex even for a
relatively small circuit such as this opamp. Therefore, Fig. 6.4 depicts only
a part of it — the visually specified plan for slew rate data extraction to be
executed by ViCE.

As previously detailed, the functional level kernel of the model according to
the FctBlockModel of Eq. (5.2) for the opamp is the central part of the behav-
ioral model of MOPA1 according to Fig. 5.13 and summarized in Eq. (6.1).

Application Examples 129

The input to the block is thus the voltage difference at the opamp input
pins denoted as Pinp and Pinm. At the output pin denoted as Pout the branch
quantities have to be defined next. The associated code segment in the entity
definition reads as

port (terminal Pinp : Electrical;
terminal Pinm : Electrical;
terminal Pout : Electrical);

Rin is not addressed explicitly). The elements of the state vector contain the

The definitions of as Vin and as Vout, Iout at Pout, respectively, in the
architecture section of the model are then

quantity Vin across Pinp to Pinm;
quantity Vout across Iout through Pout;
quantity Y: Real;

Note that the high input impedance typical to opamps has been exploited
directly in this model by omitting input currents (i.e., the parameter function

130 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

actual values of the parameter functions. Y denotes the intermediate output
quantity, which finally has to be mapped to the output branch quantities Vout
and Iout by means of the parameter function Rout.

The transition function is composed from the parameter functions DCtf,
SlewRate, and TDly. They are calibrated from the raw data produced during
the execution of the characterization plan and are then compressed into meth-
ods, that is, as a set of fitted regression models selected for each of the elements
of the set of segments according to the definitions for the methods library given
in Chapter 5. For comparison purposes Fig. 6.5 depicts the DC transfer curve
of the opamp gained from characterization and the outcome of the calibration
process by means of the methods library.

The resulting method for DCtf is detailed in Table 6.2. The input voltage
range is subdivided automatically into 5 segments, and the regression mod-
els used in these segments are polynomials up to degree 5. The differences
between characterized and fitted data are less than 1% as visible from Fig. 6.5.

The parameter functions SlewRate and TDly are then calibrated in a simi-
lar way. However, the characterization plan for these functions is much more
complex because it has to execute a sequence of transient simulation runs ac-
cording to the plan subset depicted in Fig. 6.4 for the slew rate. Step functions
featuring different amplitude values are applied to the component level model

Application Examples 131

instantiated in the testbench as given in Table 6.1, whereas the block response
to input amplitude values around zero is crucial for accurate modeling. Fig. 6.6
shows the calibration results for the method SlewRate. Note the emphasis on

132 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

the region around Vin=0. The representation of the resulting method in VHDL-
AMS is highlighted in the following code fragment.

function SlewRate(Vin: Real) return Real is

begin
if Vin < -0.1702 then

variable SR: Real;

SR := -155077.86 * Vin - 1.01541e6;

end if;

end;

The time advance function ta does not have to be denoted explicitly because
the resulting behavioral model is evaluated at the internally set integration time
steps during transient simulation. The rate of change function f, however, is
the key to the calculation of the dynamic behavior of the model. It is defined
directly by

return SR;

Y'dot == SlewRate (Vin' delayed (TD));

Application Examples 133

The function has to be initialized to an appropriate DC value acting as the
boundary condition for the calculation of y by integrating the rate of change
function. This is done without the necessity of defining as an explicit func-
tion simply by setting

After completion of an intermediate representation, the behavioral model
should be compared to the reference model by assessing their pulse responses,
for example. An instantiation of the opamp model as part of a voltage follower
circuit is used for this purpose because of the high requirements this testbench
puts on the accuracy of dynamic property modeling. Fig. 6.7 depicts the results
of this validation step. Obviously, the dynamic behavior of the component level
model of the opamp is reproduced quite accurately by the generated model.

However, this intermediate model is not yet ready to be used as a behav-
ioral model in different contexts because of the still missing calculation of the
output branch quantities. A detailed analysis of the output resistance of the

if (now < TD) use
Y == DCtf(Vin);

134 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

opamp for different static load conditions results in a highly nonlinear relation
as depicted in Fig. 6.8. A limitation of the maximum output current of the be-
havioral model as found in macro models of opamps sometimes is clearly by
far not sufficient to cover this complex relationship between output resistance
and ohmic load condition.

The resistance value of RO depicted in Fig. 5.13 as part of the Thevenin
equivalent circuit introduced for the calculation of the output branch quantities
is thus not constant and needs to be calculated from the load resistance value
by the parameter function Rout. This function, too, has to be represented by
a method gained from a calibration based on raw characterization data. The
basic approach is the same as for the parameter functions of but the resulting
complexity of the whole characterization plan is considerably increased. At
this point it becomes clear that the flexibitity and the efficiency of the tools
used for characterization purposes are crucial to an exploitation of the proposed
modeling approach in practice.

Application Examples 135

The now complete behavioral model at algorithmic level is next compared to
both the component and the procedural level model provided by the vendor of
this opamp. Fig. 6.9 depicts the results of a DC analysis of these three models
for the same load condtion. Modeling of the output resistance by the parameter
function Rout yields results which are very close to the reference. In contrast,
the Boyle et al. style macro model, which is available as part of the product
documentation, unveils a rather poor approximation of the output resistance of
the MOPA1 opamp.

We now come back to the initial application example, the active filter de-
picted in Fig. 6.1. A model of this circuit is produced according to the objec-
tive of IP reuse, thus resulting in a structural mixed-level model description.
The behavioral model of the MOPA1 opamp is instantiated four times in the
netlist of the filter — together with instances of primitive components of the
type capacitor and resistor, respectively, according to the schematic given in
Fig. 6.1. For comparison purposes two additional versions of the filter model
are produced by exploiting the available component and the procedural level
models, respectively, in the opamp instances. Fig. 6.10 visualizes a compari-

136 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

son of results gained from the transient simulation of these three filter models
for an excitation by a large swing step function.

Again, the algorithmic and the component level-based filter models feature
quite close analog waveform results both in terms of slewing and settling time
accuracy. In contrast, the output waveform of the procedural level-based filter
model differs considerably from the reference, as clearly visible from Fig. 6.10.
Next to accuracy issues a review of resource utilization during simulation is
of special interest to most system design engineers for an assessment of the
feasibility of behavioral modeling in practice. Table 6.3 summarizes the results
gained from a comparison of resource requirements of both the opamp MOPA1
and the complete active RC filter circuit, each having been modeled at three
abstraction levels.

The bottom line of this application example is that analog waveform ac-
curacy is guaranteed to a large extent by the proposed modeling approach
and that, at the same time, the runtime efficiency is improved considerably
when exploiting the detailed behavioral models for IP components. However,
the high computational effort indispensable for accurate signal waveforms has
been shifted from model execution to model characterization.

Application Examples 137

6.3 A/D Converter in CMOS Technology
The second application example is a true mixed-signal circuit — an A/D

converter with 6 bit resolution. This CMOS circuit is about four times larger
compared to the filter example detailed in the previous section. Although still
being a rather small component from a systems point of view, it poses high re-
quirements to accurate waveform calculation. A transient analysis run of even
a procedural level description of this converter takes more than 10 minutes on
top of an UltraSPARC1 server (double processor, 300 MHz) using Spectre2 as
simulation engine. These requirements stem from both the circuit complexity
and the long time intervals needed for a validation of the correct function of
the converter.

A typical application of the converter block within a mixed-signal system is
depicted in Fig. 6.11. A time-dependent voltage waveform v may be produced
by some sensor. This waveform is sampled (S/H), then subjected to a conver-
sion to a binary representation (ADC), and finally stored in a register (Reg) as
a 6 bit data word which, in turn is one of the input data items to a digital signal
processor (DSP).

The conversion approach exploited in this ADC is successive approximation
[Jes01], thus yielding the modular generic architecture detailed in Fig. 6.11.
Each of the converter stages perform the conversion according to the simple
algorithm given in Fig. 6.12 as C code. The input range of the converter is
defined by the minimum and maximum voltages Vmin and Vmax, respectively.
The output bit is set to 1 in case the input voltage Vin is greater than or equal
to the mid-range value. An offset Va is then subtracted from Vin and a shift is
applied to compensate for the conversion of the stage thus resulting in the final
output voltage Vout. This output is used as the input to the next stage. The

1 UltraSPARC is a trademark of Sun Microsystems, Inc.
2 Spectre is a trademark of Cadence Design Systems Corp.

138 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

calculation proceeds sequentially from the most significant (MSB) to the least
significant bit (LSB), which may be established directly from a comparison
operation as depicted in Fig. 6.11.

A circuit implementation of the conversion algorithm in each but the last
stage is shown in Fig. 6.13. This circuit is a modified version of a generic
circuit taken from [TS91]. It consists of a comparator acting as a switch, which
sets the output bit directly, of a second comparator and an analog adder, which
jointly perform the subtraction and shift operations as part of the output voltage
calculation.

The active components used are off-the-shelf products: two LMC6762 com-
parators [Sem99] and one MAX492 opamp [Max95]. A total of seven resistors
complete the circuit of Fig. 6.13. The vendors of the active components pro-
vide procedural level models (i.e., SPICE macros) as part of the documentation
of their products, but no circuit descriptions. This means that these vendor-
provided models are the only information available to perform the characteri-

139Application Examples

zation prior to behavioral model generation, and they are the only reference for
model accuracy assessment. From the experiences made with macro models
as detailed for the MOPA1 opamp, it is clear that one would certainly prefer
component level models as an entry point to behavioral modeling, but in this
case there is no choice.

When analyzing the generic architecture of the ADC in Fig. 6.11, it seems to
be rather obvious to try to arrange for a behavioral model of the complete con-
verter stage because it may be reused up to n-1 times in an n bit A/D converter.
The DC transfer curve resulting from a first characterization of the converter
stage of Fig. 6.13 is depicted in Fig. 6.14 for the input voltage ranging from 1V
to 2V (i.e., the envisaged conversion range of the 6 bit ADC). This curve is not
steady; there is a sudden change of the Vout value when the BIT value changes
from 0.0 to 2.5V (i.e., from logical 0 to logical 1). In other words: This trans-
fer curve depends not only on external input signals as usual, but on values
of internal signals, too. A behavioral algorithmic level model of the converter
stage, therefore, is not directly achievable from the proposed methodology.

A steady representation of the transfer curve for the entire input range may
be achieved from partitioning the converter stage such that a change of the
BIT value takes place externally to the block to be modeled. Thus, a previ-
ous internal signal of the converter stage is moved to an external pin, which
generates the input signal to an appropriate subblock. Fig. 6.15 depicts how
the partitioned converter stage now looks like. All reference and supply volt-

140 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

age connections have been removed from this figure for the sake of clarity.
It consists of the switch modeled directly by the LMC6762 macro provided by
the vendor of the component and by a new subblock named ConvSubStage
with two input and one output signals, respectively. A behavioral model of this
block is being developed in the sequel according to the proposed methodology.

DC characterization of ConvSubStage now produces two tranfer curves
over the whole range of the input signal Vin: Vout0 (i.e., transfer curve
Vout (Vin) for BitIn=0), and Vout1 (Vin) for BitIn=1, respectively, as de-
picted in Fig. 6.16. Such transfer curves are quite common for circuits featur-
ing a hysteresis behavior. The model generation for this class of circuits takes
place exactly as detailed for the converter stage: First, partitioning of the cir-
cuit, if necessary and, secondly, extraction of transfer curve data subjected to
different input signal conditions from running a characterization of a lower ab-
straction level representation of the block to be modeled. The characterization
in time domain of the partitioned subblock results in two versions each of the
related parameter functions of the algorithmic model.

After completion of all, in this case, rather sophisticated characterization
and calibration tasks according to the methodology of Chapter 5, it is — as

Application Examples 141

142 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

always — highly recommended to validate the generated behavioral model
as the next step. In general, this is done by an appropriate testbench and by
comparing the response of the behavioral model to waveforms gained from a
simulation of the reference representation of the circuit (i.e., the procedural
level model of the subblock ConvSubStage). For convenience, the complete
model representations in VHDL-AMS of the subblock, the converter stage, and
the 6 bit A/D converter, respectively, are given at the end of this section.

The output waveforms Vout of both models resulting from an excitation by
a large-swing pulse — nearly over the whole range of the input voltage to the
converter — are depicted in Fig. 6.17. Here, even the asymptotic dynamic
behavior of the reference model is reproduced accurately by the generated be-
havioral model — without any manual fine tuning of the latter.

Next, the converter stage model — denoted as ConverterStage in the fol-
lowing VHDL-AMS code — is assembled according to Fig. 6.11 in order to
run the validation for this basic block of the A/D converter. The input to the
stage is a sine function — a typical test function for converters. The outputs
are the BIT and the Vout signal, respectively. The comparison is performed

Application Examples 143

as before (i.e., by exercising both the compound procedural/algorithmic and
the procedural level models of the stage). Fig. 6.18 visualizes the results pro-
duced by these models, which implement the conversion algorithm outlined in
Fig. 6.12. Again, there is nearly no difference in the waveforms from these
models, which exploit rather different modeling methods.

Finally, we construct the resulting behavioral model of the 6 bit A/D con-
verter as a structural description, composed from mixed-level models — the
ConverterStage instantiations — according to the generic architecture given
in Fig. 6.11. Its testbench exercises a sine input signal with an amplitude cov-
ering the whole conversion range of the module (i.e., up to 2V amplitude).
Fig. 6.19 depicts the input to the converter and its output data Bit 1 to 6 of
the converted amplitude value. On the right side of the figure a zoomed repre-
sentation of input and output data is depicted in order to visualize the correct
functionality of the converter model. As for the filter example detailed in the
previous section, the simulation times for both the procedural and the mixed
procedural/algorithmic models of the complete converter are compared. The
results summarized in Table 6.4 indicate that the larger the circuit is modeled
by behavioral models, the more significant the speed-up becomes. Note that
the speed-up values in Table 6.4 are based on a comparison of procedural level

144 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

representations of a circuit which are, in practice, up to one order of magnitude
faster in simulation than component level models. This achievable increase in
simulation speed is a very interesting result, at least for systems engineers who
are somewhat reluctant to use behavioral models for system design purposes.
An additional asset is that the more complex the circuit replaced by behavioral
models is, the higher the speed-up figure becomes — as visible from Table 6.4.

An interesting question arises about the properties of calibrated generic
models of converters, which directly exploit some coded representations of
conversion algorithms. This is a wide-spread approach to providing high-level
and equally “accurate” models for IP blocks intended for use in system level

Application Examples 145

simulation of complex information processing systems as discussed in Chap-
ter 5.

Let us come back to the generic model outlined in Fig. 5.2. Now, we will
take the conversion time extracted from characterization results of the proce-
dural level model of the converter stage and instantiate a structured version of
the generic model outlined in Chapter 3 accordingly. The resulting code of the
property mock-up, mixed-mode algorithmic model is given in Fig. 6.20.

This model operates synchronously to the system clock; it may thus be
viewed as an assembly of the sample and hold and of the converter modules
of Fig. 6.11. The model will now be compared to both the reference and to
the mixed-level models of the ADC by exploiting the same testbench. The
simulation results of these three models are almost identical when displayed

146 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

Application Examples 147

at a coarse resolution, as shown on the left side of Fig. 6.19. However, when
zooming into these waveforms for a more detailed analysis, it becomes clear
that the switching time points of the MSB are almost identical, but not for the
LSB of the converter models as detailed in Fig. 6.21. The reference and the
mixed-level models, again, show almost the same result, whereas the switching
time point of the calibrated generic model seems to come up ’too early’. An
in-depth analysis of the switching time points of all bit positions unveils that
this shift in time is visible from both the mixed-level and the reference model
and that it increases step by step from MSB to LSB.

The reason for this strange and, at a first glance, unexpected property of
the mixed-level and reference models again is the underlying analog operation
of the converter. The transition of the output voltage of each converter stage
forming the input to the next stage does not take place in zero time as implicitly
assumed in the calibrated generic model of the converter. The analog output
waveform from a stage, therefore, reaches the check point (i.e., 50% of the
swing) somewhat later, which in turn results in a shift of the switching time
point of the associated bit value. This intimate error of the generic model (i.e.,
not predicting correctly the timeshift) occurs even when the calibration of the
conversion time of a stage is highly accurate. In contrast, models generated

148 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

from the advocated methodology implicitly reproduce this time point shifting
property quite accurately because of their intrinsic analog signal waveform
calculation as clearly visible from Fig. 6.17. A delay of the LSB switching time
point may result in a violation of the setup time specification of the subsequent
output register as depicted in Fig. 6.11, thus causing a dynamic error condition
which may affect the whole systems operation.

The next question probably asked by a systems engineer is whether this
modeling error is of academic interest only. The answer is: It depends on the
application context of the models. In case a system design is highly aggressive,
setup time violations are likely to occur. One should be aware that there is
no way to detect this situation well in advance by means of simulation runs
when using calibrated digital-style stage models for successive approximation
converters.

The detailed model of the 6 bit A/D converter concludes this section. It
is introduced by the following top-down presentation consisting of a total of
three levels of hierarchy. The listings to follow are rather lengthy because of an
almost complete presentation of the VHDL-AMS code. This part may simply
be skipped by those readers who are not interested in coding details.

Fig. 6.22 depicts the code of the top level entity ADC 6 and its architecture
definition according to the structural representation depicted in Fig. 6.11. It
consists of a total of five instances of ConverterStage and one instance of the
commercially available macro model of the standard comparator component
LMC6762, respectively.

Next, the coding of the ConverterStage is given in Fig. 6.23. This forms
the intermediate level of hierarchy according to the partitioning step presented
in Fig. 6.15. It consists mainly of a comparator and a ConvSubStage instance
each. The latter is the behavioral model already detailed, thus resulting in a
mixed-level representation of ConverterStage.

Finally, the model of ConvSubStage (i.e., the lowest level of hierachy) as
generated by the proposed modeling methodology and automatically mapped
to VHDL-AMS is given in Fig. 6.23. It consists mainly of the calibrated pa-
rameter functions according to the BlockModel definition. In this special case
the TDly function value denoted TD is passed by a generic parameter. This
is because the characterization and the calibration process resulted practically
in a constant function value. The coded calibration results of the parameter
functions are documented in Fig. 6.24 in terms of fitting accuracy, number of
segments, and maximum degree of polynomials used as regression models.
These function definitions account by far for most of the model text. Note how
the calculation of the effective input signal value denoted as VI is being defined
right at the beginning of the executable section of the model.

The implemented functionality of a block modeled in the proposed way
cannot be deduced from an inspection of the code as depicted in Fig. 6.24.

Application Examples 149

This drawback, however, turns into a considerable advantage when it comes to
disclosing models of IP products.

150 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

Application Examples 151

152 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

Application Examples 153

154 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

Application Examples 155

6.4 Conclusions
Abstract representations of behavior — modeling of physical processes tak-

ing place in the real world always exploits some more or less obvious simpli-
fications and abstractions — may be derived in a variety of ways. There are
vivid discussions in various scientific communities which address modeling is-
sues in terms of the interrelationship of structural and behavioral domains and
in terms of model quality. These fundamental questions demand reflection,
and sensible answers are to be elaborated even for a restricted area such as
mixed-signal integrated circuit design.

Model engineering of mixed-signal circuits and systems is a rather com-
plex and a multi-facetted problem because this class of circuits and systems is
part of two all but disjoint worlds, namely time-continuous and time-discrete
signal processing. The problem may, however, be attacked by first search-
ing for a common foundation of these almost disjoint worlds; starting from
this solid ground, abstraction hierarchies then can be defined. Further, model-
ing methods related to one or more abstraction levels may be elaborated, and
their figures of merit, possible drawbacks as well as application areas have to
be identified. This requires a thorough consideration of modeling concepts,
calibration methods, abstraction hierarchies, and model representation issues,
which by no means are independent from each other, however.

At first glance, these mainly academic problems have a considerable impact
on the everyday work of system and integrated circuit design engineers. Time
to market pressure, tight design time frames, and cost constraints on the final
product urge practitioners to adopt their design procedures accordingly, which
essentially results in a computer-aided overall design flow, extensive exploita-
tion of available off-the-shelf components, and IP products. Design variants
and trade-offs, therefore, are more and more relying on simulation as the cen-
tral validation method for design decisions. Consequently, adequate models of
systems, subsystems, functional blocks, and components at different levels of
detail have to be present in order to appropriately validate design variants and
decisions. Interrelationships of model representations and modeling methods
have to be considered, too. A modeler or a model user should always be aware
that the expressivity of a HDL is a necessary, but not a sufficient condition for
model engineering.

When introducing especially high-level models of all these objects into the
overall design flow, one is faced with the need to establish a refinement pro-
cess for the top-down, an abstraction process for the bottom-up approach to
traversing the abstraction hierachy, and a viable method to combine all into a
comprehensive meet-in-the-middle design approach. A replacement of lower-
level models with higher-level ones and vice versa can only be accomplished
if the models replacing each other are equivalent; in this manner significant
inaccuracies can be avoided. Equivalency, however, needs a consistent defini-

156 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

tion especially when moving from the functional model class to the behavioral
class as outlined in this book. But even when interchanging models at differ-
ent abstraction levels, which are part of the same class, an appropriate metric
is required for a quantification of the equivalence property. Models of design
objects featuring differently detailed representations of their behavior simply
cannot produce identical outputs in terms of properties and especially in terms
of signal waveforms for all feasible model instantiation contexts. An introduc-
tion of abstraction levels would otherwise make no sense at all. Behavioral
equivalence can unambiguously be attributed only if both block properties
and output waveforms resulting from executing models denoted at different
abstraction levels fit into predefined ranges of properties and waveforms, re-
spectively, which represent the metric of quality. Equivalence assessment of
high-level behavioral models instantiated in different contexts is still an open
research area.

A comprehensive methodology for model generation for all analog and
mixed-signal circuit classes and for all operation domains of these circuits is
not yet documented in open literature, perhaps it cannot be achieved at all.
Known approaches and methods to this problem are constrained in one way or
the other. There is no Golden Rule available, which can be used adequately as
a foundation for model generation with accurate and equally efficient models
for mixed-signal circuits in mind — except, maybe, the following one:

Digital signals within and electrical properties of mixed-signal cir-
cuits are always results of an abstraction operation from physical
time and value continuous signal waveforms.

References

[AB95] B. A. Antao and A. J. Brodersen. Behavioral simulation for analog system
design verification. IEEE Trans. VLSI Systems, 3(3):417–29, 1995.

[Ana95] ANACAD EES GmbH, Ulm. SimPilot Refernce Manual, 1995.

[Ana97] Analogy Inc. SaberDesigner Applications Reference, 4.2 edition, 1997.

[Ant98] Antrim Design Systems. The characterization and behavioral model genera-
tion of analog intellectual property. White paper, Antrim Design Systems, Inc.,
1998. http://www.antrim.com/.

[Ant99] Antrim Design Systems. Advanced techniques for the simulation of mixed-
signal integrated circuits. White paper, Antrim Design Systems, Inc., 1999.
http://www.antrim.com/.

[Arm89] J. Armstrong. Chip-Level Modeling with VHDL. Prentice-Hall, Englewood
Cliffs, 1989.

[Bau94] J. Baumgart. Implementation of an object-oriented data model for the visual-
ization of asynchronous communication protocols. Master’s thesis, Darmstadt
Univ. of Technology, 1994. in German.

[BCP74] R. Boyle, M. Cohn, and O. Pedersen. Macromodeling of integrated circuit op-
erational amplifiers. IEEE J. Solid-Slate Circ., pages 353–64, 1974.

[BCP89] K. E. Brenan, S. L. Campell, and L. R. Petzold. Numerical Solution of Initial-
Value Problems in Differential-Algebraic Equations. Society for Industrial and
Applied Mathematics, Philadelphia, 1989.

[BD87] G. E. P. Box and N. R. Draper. Empirical Model-Building and Response Sur-
faces. John Wiley and Sons, New York, 1987.

[BHW99] W. Boßung, S. A. Huss, and L. Wehmeyer. A graphical-interactive tool for
the configuration and the runtime control of a parallel machine. In 5. ITG/GI
Workshop Analog ’99, 1999. in German.

[BLR95] J.-M. Bergé, O. Levia, and J. Rouillard, editors. Modeling in Analog Design.
Kluwer Academic Publishers, Boston/Dordrecht/London, 1995.

157

158 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

[Box78] G. E. P. Box. Statistics for Experimenters. John Wiley and Sons, New York,
1978.

[Cam98] P. Campisi. Analog CMOS library for analog synthesis sys-
tems. Technical report, University of Cincinnatti, 1998.

[CB97] E. Christen and K. Bahalar. VHDL 1076.1: Analog and Mixed-
Signal Extensions to VHDL, chapter 2. Kluwer Academic Publishers,
Boston/Dordrecht/London, 1997.

[CC92] J. A. Conelly and P. Choi. Macromodeling with Spice. Prentice-Hall, Engle-
wood Cliffs, 1992.

[Cel91] F. E. Cellier. Continuous System Modeling. Springer-Verlag,
Berlin/Heidelberg/New York, 1991.

[Cir91] M. A. Cirit. Characterizing a VLSI standard cell library. In IEEE Custom
Integrated Circuits Conf., pages 25.7.1–25.7.4, 1991.

[CL75] L. O. Chua and P. M. Lin. Computer-Aided Analysis of Electronic Circuits:
Algorithms and Computational Techniques. Prentice-Hall, Englewood Cliffs,
1975.

[CSLS00] C. Clauss, A. Schneider, T. Leitner, and P. Schwarz. Modeling of electrical
circuits with Modelica. In Proc. Modelica Workshop, 2000.

[CY94] G. Casinovi and I.-M. Yang. Multi-level sitmulaiton of large analog sys-
tems containing behavioral models. IEEE Trans. on Computer Aided Design,
13(11): 1391–9, 1994.

[DG98] B. De Smedt and G. Gielen. Nonlinear behavioral modeling and phase noise
evaluation in phase locked loops. In IEEE Custom Integrated Circuits Conf.,
pages 53–6, Santa Clara, 1998.

[DJS95] E. Driouk, O. Jarov, and A. Sukhodolsky. On software development to support
statistical simulation of analogue circuits. In EDAC, pages 539–43, 1995.

G. Debyser, F. Leyn, G. Gielen, W. Sansen, and M. Styblinski. Efficient statis-
tical analog IC design using symbolic methods. In IEEE Int. Symp. on Circuits
and Systems, pages 21–4, Monterey, 1998.

[DP98] J. Dabrowski and A. Pulka. Discrete approach to PWL analog modeling in
VHDL environment. Analog Integrated Circuits and Signal Processing, 16:91–
9, 1998.

J. Eckmüller, S. Zizala, R. Jancke, P. Trappe, and P. Schwarz. A methodology
for the modeling of mixed-signal blocks. In Workshop VHDL-VMS, Reutlingen,
2000. in German.

[FVG00] K. Francken, P. Vancorenland, and G. Gielen. DAISY: A simulation-based high-
level synthesis tool for delta-sigma modulators. In IEEE/ACM Int. Conf. on
Computer-Aided Design, pages 188–92, San Jose, 2000.

REFERENCES 159

[GCP01] D. Gibson, H. Carter, and C. Purdy. The use of hardware description languages
in the development of micromechanical systems. Analog Integrated Circuits
and Signal Processing, 2(28): 173–81, 2001.

[GH93] M. Goedecke and S. A. Huss. Ein Konzept für eine visuelle Umgebung zur
Charakterisierung gemischt digital/analoger Schaltungen. In 2. ITG/GME-
Workshop Entwicklung und Analogschaltungen mit CAE-Methoden, pages 21–
6, 1993.

[GH94] M. Goedecke and S. A. Huss. Ein interaktives System zur Charakterisierung
gemischt digital/analoger Schaltungen. In 3. ITG/GME-Workshop Entwicklung
und Analogschaltungen mit CAE-Methoden, pages 21–6, 1994.

[Goe01] M. Goedecke. Methods for describing characterization plans for the evaluation
of analog/digital circuits. PhD thesis, Darmstadt Univ. of Technology, 2001. in
German.

[GS91] G. Gielen and W. Sansen. Symbolic Analysis for Automated Design of Analog
Integrated Circuits. Kluwer Academic Publishers, Boston/Dordrecht/London,
1991.

[GV94] D. D. Gajski and F. Vahid. Specification and Design of Embedded Systems.
Prentice-Hall, Englewood Cliffs, 1994.

[GW98] Ch. Grimm and K. Waldschmidt. Repartitioning and technology mapping of
electronic hybrid systems. In IEEE/ACM DATE Conf., Paris, 1998.

[GWS94] G. Gielen, P. Wambacq, and W. Sansen. Is there a future for symbolic analysis?
In IEEE 1SCAS, page 453, London, 1994.

[Ham95] H. Hamad. Conceptualization of abstract behavioral models of analog func-
tional blocks. PhD thesis, Darmstadt Univ. of Technology, 1995. in German.

[HG95] S. A. Huss and M. Goedecke. Characterization of integrated circuits. Mikroelek-
tronik und Mikrosystemtechnik, 9(4): 14–8, 1995. in German.

[HGT91] S. A. Huss, M. Gerbershagen, and G. Tränkle Automatic performance charac-
terization of analog functional blocks. Analog Integrated Circuits and Signal
Processing, 1:277–86, 1991.

[HRB73] C. W. Ho, A. E. Ruehli, and P. A. Brennan. The modified nodal approach to
network analysis. IEEE Trans. on Circuits and Systems, 22(6):504–8, 1973.

[IEE99] IEEE Computer Society. IEEE Standard VHDL Analog and Mixed-Signal Ex-
tensions, 1999. IEEE Std. 1076–1999.

[Jes0l] P. G. A. Jespers. Integrated Conveners. Oxford University Press, Oxford, 2001.

[JRS91] Y.-C. Ju, V. Rao, and R. Saleh. Consistency checking and optimization of
macromodels. IEEE Trans. on Computer-Aided Design, 10(8):957–67, 1991.

[Kas00] M. Kasper. Mikrosystemenrwurf. Springer-Verlag, Berlin, 2000.

[KC87] A. I. Khuri and J. A. Cornell. Response Surfaces: Designs and Analyses. Marcel
Decker, New York, 1987.

160 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

[Klu0l] St. Klupsch. Design, integration and validation of heterogenous systems. In
IEEE Symp. on Quality Electronic Design, San José, 2001.

[LAR+97] M. Laudon, Ch. Amacker, Ph. Renaud, A. Vachoux, B. Romanowicz, Y. Ansel,
and G. Schröpfer. VHDL-1076.1 modeling examples for microsystem simu-
lation in analog and mixed-signal hardware description languages. In Ana-
log and Mixed-Signal Hardware Description Languages, Current Issues in
Electronic Modeling, chapter 7, pages 131–54. Kluwer Academic Publishers,
Boston/Dordrecht/London, 1997.

[LDGS97] F. Leyn, W. Daems, G. Gielen, and W. Sansen. A behavioral signal path model-
ing methodology for qualitative insight in and efficient sizing of CMOS opamps.
In IEEE/ACM Int. Conf. on Computer-Aided Design, pages 374–81, San Jose,
1997. IEEE/ACM.

[LMN95] F. Lémery, J.-P. Morin, and E. Nercessian. An interactive environment for ana-
log characterization and behavioral modeling. In Europ. Solid State Circuits
Conf., pages 314–37, Lille, 1995.

[LMO83] M. Landry, J. L. Malouin, and M. Oral. Model validation in operations research.
Europ. J. of Operations Research, 14(3):207–20, 1983.

[LSJ96] J.-Y. Lin, W.-Z. Shen, and J.-Y. Jou. A power modeling and characteriza-
tion method for the CMOS standard cell library. In IEEE/ACM Int. Conf. on
Computer-Aided Design, pages 400–4, 1996.

[Max95] Maxim Integrated Circuits. MAXIM Single/Dual/Quad, Micropower, Single-
Supply Rail-to-Rail Op Amps, 1995. http://www.maxim-ic.com/.

[Men99] Mentor Graphics Corporation. ADVance MS User’s Manual, 1999.

[MF95] H. A. Mantooth and M. Fiegenbaum. Modeling with an Analog Hardware De-
scription Language. Kluwer Academic Publishers, Boston/Dordrecht/London,
1995.

[MK90] K. Milzner and F. Krohm. Knowledge-based simulation environment. In IEEE
Custom Integrated Circuits Conf., pages 325–8, 1990.

[Mon91] C. Montgomery. Design and Analysis of Experiments. John Wiley and Sons,
New York, third edition, 1991.

[NHM94] P. Nussbaum, M. Hinners, and L. Menevaut. SimBoy: An analog simulator
interface for automated datasheet extraction. In EuroASIC, pages 37–41, 1994.

[Nut97] UC Berkeley. Nutmeg Reference Manual, 1997.

[OHLR00] J. Oudinot, Ch. Hui-Bon-Hoa, F. Lemery, and A. Rossi. Validation of a new
methodology using VLSI-AMS on a hard-disk drive design. In ECSI Forum on
Design Languages, pages 141–9, Tübingen, 2000.

[Pra91] H. Praehofer. System-theoretic Foundations of Combined Discrete-Continuous
System Simulation. PhD thesis, Johannes Kepler Universität Linz, 1991.

[Rat83] D. Ratkowsky. Nonlinear Regression Modeling, volume 48 of Statistics. Marcel
Decker, New York, 1983.

REFERENCES 161

[Ray90] Semiconductor Division, Raytheon Comp. RLA linear macrocell array bread-
boarding kit, 1990.

[RH98] R. Rosenberger and S. A. Huss. A systems theoretic approach to behavioral
modeling and simulation of analog functional blocks. In IEEE/ACM DATE
Conf., pages 721–8, Paris, 1998.

[Rob99] S. Robinson. Simulation, verification, validation and confidence: A tutorial.
Trans. of Soc. of Computer Simulation, 16(2):63–9, 1999.

[Rom98] B. F. Romanowicz. Methodology for the Modeling and Simulation of Microsys-
tems. Kluwer Academic Publishers, Boston/Dordrecht/London, 1998.

[Ros94a] R. Rosenberger. Design and implementation of a methods library for behavioral
model calibration. Master’s thesis, Darmstadt Univ. of Technology, 1994. in
German.

[Ros94b] R. Rosenberger. Integration of Mathematica into CLANG. Technical report,
Darmstadt Univ. of Technology, 1994. in German.

[Ros0l] R. Rosenberger. A systems-theoretic approach to behavioral model generation
in mixed-signal domain. PhD thesis, Darmstadt Univ. of Technology, 2001. in
German.

[RW91] J. R. Rasure and C. S. Williams. An interpreted data flow visual language and
software development environment. Visual Languages and Computing, 2:217–
46, 1991.

[Sem99] National Semiconductor. LMC6762 Dual MicroPower Rail-To-Rail Input
CMOS Comparator with Push-Pull Output. National Semiconductor, Product
Folder, 1999. http://www.national.com/.

[SG94] G. Strube and H. Gräb. ASIS: Automatic simulator control. In 3. ITG/GME-
iWorkshop Entwicklung und Analogschaltungen mit CAE-Methoden, pages
297–302, 1994. in German.

[SJN94] R. Saleh, S.-J. Jou, and A. R. Newton. Mixed-Mode Simulation and Analog Mul-
tilevel Simulation. Kluwer Academic Publishers, Boston/Dordrecht/London,
1994.

[SSS97] G. Schatzberger, H. Senn, and P. Söser. Automatisierte Charakterisierung
von Operationsverstärkern mit Hilfe von Simulationswerkzeugen. In 5.
GI/ITG/GMM Workshop Methoden des Entwurfs und der Verifikation digitaler
Systeme, pages 337–43, 1997.

[SV95] C. J. R. Shi and A. Vachoux. VHDL-A Design Objectives and Rationale, vol-
ume 2 of Current Issues in Electronic Modeling (CIEM), chapter 1, pages 1–30.
Kluwer Academic Publishers, Boston/Dordrecht/London, 1995.

[Tho90] J. U. Thoma. Simulation by Bondgraphs. Springer-Verlag,
Berlin/Heidelberg/New York, 1990.

[Til0l] M. M. Tiller. Introduction to Physical Modeling with Modelica. Kluwer Aca-
demic Publishers, Boston/Dordrecht/London, 2001.

162 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN

[TS91] U. Tietze and Ch. Schenk. Halbleiterschaltungsstechnik. Springer-Verlag,
Berlin, 1991.

[VB97] A. Vachoux and J.-M. Bergé, editors. Analog and Mixed-Signal Hardware De-
scription Languages. Kluwer Academic Publishers, Boston/Dordrecht/London,
1997.

[VDG00] M. Vogels, B. De Smedt, and G. Gielen. Modeling and simulation of a sigma-
delta digital to analog converter using VHDL-AMS. In IEEE/VIUF Int. Work-
shop on Behavioral Modeling and Simulation, Orlando, October 2000.

[VHK+91] M. Valtonen, P. Heikkila, A. Kankkunen, K. Mannersalo, R. Niutanen, P. Ste-
nius, T. Veijola, and J. Virtanen. APLAC - a new approach to circuit simulation
by object-orientation. In Europ. Conf. on Circuit Theory and Design, pages
351–60, 1991.

[VS83] J. Vlach and K. Singhai. Computer Methods for Circuit analysis and Design.
Van Nostrand Reinhold, New York, 1983.

[VVGS99] J. Vandenbussche, G. Van der Plas, G. Gielen, and W. Sansen. Behavioral model
of reusable D/A converters. IEEE Trans. on Circuits and Systems, 46(10): 1708–
18, 1999.

[VVV+99] G. Van der Plas, J. Vandenbussche, W. Verhaegen, G. Gielen, and W. Sansen.
Statistical behavioral modeling for A/D converters. In IEEE Int. Conf. on Elec-
tronics, Circuits, and Systems, pages 1713–6, 1999.

[WGS98] P. Wambacq, G. Gielen, and W. Sansen. Symbolic network analysis methods
for practical analog integrated circuits: A survey. IEEE Trans. on Circuits and
Systems, 45(10): 1331–41, 1998.

[WVD+99] P. Wambacq, G. Vandersteen, S. Donnay, M. Engels, I. Bolsens, E. Lauwers,
P. Vanassche, and G. Gielen. High-level simulation and power modeling of
mixed-signal front-ends for digital telecommunications. In IEEE Int. Conf. on
Electronics, Circuits and Systems, pages 525–8, 1999.

[YA91] K. Yoon and P. Allen. An adjustable accuracy model for VLSI analog circuits
using lookup tables. Analog Integrated Circuits and Signal Processing, 1:45–
63, 1991.

[ZPK00] B. P. Zeigler, H. Praehofer, and T. G. Kim. Theory of Modeling and Simulation.
Academic Press, San Diego, second edition, 2000.

	ModelEngineeringinMixedSig1066_f.jpg
	1.pdf
	2.pdf
	3.pdf
	4.pdf
	5.pdf
	6.pdf
	7.pdf
	8.pdf

